ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

消除C 11可变参数模板参数中的重复条目

2019-10-05 01:14:49  阅读:207  来源: 互联网

标签:virtual-inheritance c c11 variadic-templates multiple-inheritance


我在C中使用具有多个虚拟继承的可变参数模板,以将类型聚合到单个结构定义中.

以下是一组结构示例:

struct meas { int i; };
struct meas2 : public virtual meas { int j; };
struct meas3 : public virtual meas { int k; };

然后我使用多个虚拟继承来聚合它们:

template <typename... Args>
struct zipper : public virtual Args... {};

然后我可以这样做:

typedef zipper<meas, meas2> meas_type;
meas* m = new meas_type;

这些可以级联:

typedef zipper<meas3, meas_type> meas_type2;

但是,生成的对象相当笨重:

$46 = (zipper<meas3, zipper<meas, meas2> >) {
  <meas3> = {
    <meas> = {
      i = 0
    }, 
    members of meas3: 
    _vptr.meas3 = 0x400ec8, 
    k = 0
  }, 
  <zipper<meas, meas2>> = {
    <meas2> = {
      members of meas2: 
      _vptr.meas2 = 0x400ee0, 
      j = 6299120
    }, 
    members of zipper<meas, meas2>: 
    _vptr.zipper = 0x400eb0
  }, <No data fields>}

根据gdb.

尝试压缩相同的基本类型时还存在次要问题:

typedef zipper<meas, meas> meas_type2;

以上在G 4.6.3下产生编译错误“重复基类’meas’无效”.

因此问题是双重的:

>有没有办法转换zipper< meas3,zipper< meas,meas2>>拉链< meas3,meas2>?
>在完成#1时,有没有办法删除类型列表中的重复条目?

谢谢!

解决方法:

我解决这个问题的策略是使用几个级别的间接.

>拉链< Args ...>通过继承来调度对函数process_zipper_arguments的参数处理:

例:

template < typename... Args >
struct zipper : zipper < typename process_zipper_arguments < Args... >::type > {};

>使用模板< typename ... Args> struct typelist {}用于跟踪要继承的对象类型.
>专门的结构拉链<类型列表< Args ...> &gt ;:公共虚拟Args …来做实际的继承

为了摆脱重复的父类型,在process_zipper_arguments中使用了两个辅助函数:

> is_in< CandidateType,typelist< Args ...> > :: type是true_type或false_type,可以递归定义
> add_unique< CandidateType,typelist< Args ...> > :: type是一个类型列表< ...>是否添加了CandidateType.它调用is_in来确定.

这是完整的代码,至少用g(GCC)4.6.3编译,其中–std = c 0x.批评它是受欢迎的.

// Forward declarations
template < typename... Args >
struct zipper;

// Two types meaning true and false
struct true_type {};
struct false_type {};

// The only purpose of this struct is to be associated with Types...
template < typename... Types >
struct typelist {};


// ===================================================
// is_in < type, typelist<...> >::type
//     is true_type if type is in typelist
//     is false_type if type is not in typelist

// Assume TElement is not in the list unless proven otherwise
template < typename TElement, typename TList >
struct is_in {
  typedef false_type type;
};

// If it matches the first type, it is definitely in the list
template < typename TElement, typename... TTail >
struct is_in < TElement, typelist < TElement, TTail... > >
{
  typedef true_type type;
};

// If it is not the first element, check the remaining list
template < typename TElement, typename THead, typename... TTail >
struct is_in < TElement, typelist < THead, TTail... > >
{
  typedef typename is_in < TElement, typelist < TTail... > >::type type;
};

// ===================================================
// add_unique < TNew, typelist<...> >::type
//     is typelist < TNew, ... > if TNew is not already in the list
//     is typelist <...> otherwise

// Append a type to a type_list unless it already exists
template < typename TNew, typename TList,
  typename Tis_duplicate = typename is_in < TNew, TList >::type
  >
struct add_unique;

// If TNew is in the list, return the list unmodified
template < typename TNew, typename... TList >
struct add_unique < TNew, typelist < TList... >, true_type >
{
  typedef typelist < TList... > type;
};

// If TNew is not in the list, append it
template < typename TNew, typename... TList >
struct add_unique < TNew, typelist < TList... >, false_type >
{
  typedef typelist < TNew, TList... > type;
};

// ===================================================
// process_zipper_arguments < Args... >::type
//     returns a typelist of types to be inherited from.
//
// It performs the following actions:
// a) Unpack zipper<...> and typelist <...> arguments
// b) Ignore values that are already in the list

template < typename... Args >
struct process_zipper_arguments;

// Unpack a zipper in the first argument
template < typename... ZipperArgs, typename... Args >
struct process_zipper_arguments < zipper < ZipperArgs... >, Args... >
{
  typedef typename process_zipper_arguments < ZipperArgs..., Args... >::type type;
};

// Unpack a typelist in the first argument
template < typename... TypeListArgs, typename... Args >
struct process_zipper_arguments < typelist < TypeListArgs... >, Args... >
{
  typedef typename process_zipper_arguments < TypeListArgs..., Args... >::type type;
};

// End the recursion if the list is empty
template < >
struct process_zipper_arguments < >
{
  typedef typelist < > type;
};

// Construct the list of unique types by appending them one by one
template < typename THead, typename... TTail >
struct process_zipper_arguments < THead, TTail... >
{
  typedef typename
    add_unique < THead,
      typename process_zipper_arguments < TTail... >::type
    >::type type;
};


// ===================================================
// The zipper class that you might want


// If the list of types is not yet known, process it.
// The inheritance is ugly, but there is a workaround
template < typename... Args >
struct zipper : zipper < typename process_zipper_arguments < Args... >::type >
{
  // // Instead of inheriting, you can use zipper as a factory.
  // // So this:
  // typedef zipper < meas2, zipper < meas1, meas > > mymeas;
  // // Turns to:
  // typedef typename zipper < meas2, zipper < meas1, meas > >::type mymeas;
  typedef zipper < typename process_zipper_arguments < Args... >::type > type;
};

// If the list of types is known, inherit from each type
template < typename... Args >
struct zipper < typelist < Args... > >
: public virtual Args...
{};

// ===================================================
// Short usage demo, replace with your own code

struct meas {
    int i;
};

struct meas2 {
    int j;
};

struct meas3 {
    int k;
};


typedef zipper < meas, meas, meas3 > meas_type;
typedef zipper < meas2, meas_type, meas2 > meas_type2;

typedef typename zipper < meas_type2 >::type nicer_meas_type2;


int main ( int, char** )
{
    meas * m = new meas_type2;
    meas_type2 n;
    nicer_meas_type2 o;

    return 0;
}

调试它会得到以下结果(返回0处的断点;行):

(gdb) print *m
$1 = {i = 0}
(gdb) print n
$2 = {<zipper<typelist<meas, meas3, meas2> >> = {<meas> = {i = 4196320}, <meas3> = {k = 0}, <meas2> = {j = 0}, 
    _vptr.zipper = 0x400928}, <No data fields>}
(gdb) print o
$3 = {<meas> = {i = 4195719}, <meas3> = {k = 0}, <meas2> = {j = 1}, _vptr.zipper = 0x4009a8 <VTT for zipper<typelist<meas, meas3, meas2> >>}

标签:virtual-inheritance,c,c11,variadic-templates,multiple-inheritance
来源: https://codeday.me/bug/20191005/1854651.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有