ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

三维旋转:旋转矩阵,欧拉角,四元数

2019-07-20 10:36:41  阅读:328  来源: 互联网

标签:cos 欧拉角 旋转 四元 amp theta qpq


如何描述三维空间中刚体的旋转,是个有趣的问题。具体地说,就是刚体上的任意一个点P(x, y, z)围绕过原点的轴(i, j, k)旋转θ,求旋转后的点P’(x’, y’, z’)。

旋转矩阵

旋转矩阵乘以点P的齐次坐标,得到旋转后的点P’,因此旋转矩阵可以描述旋转,

[xyz1]=R[xyz1]\begin{bmatrix}x'\\ y'\\ z'\\ 1\end{bmatrix}=R\cdot \begin{bmatrix}x\\ y\\ z\\ 1\end{bmatrix}⎣⎢⎢⎡​x′y′z′1​⎦⎥⎥⎤​=R⋅⎣⎢⎢⎡​xyz1​⎦⎥⎥⎤​

绕x,y,或z轴旋转θ的矩阵为:

Rx(θ)=[1000cosθsinθ0sinθcosθ]R_{x}(\theta)=\begin{bmatrix}1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta\end{bmatrix}Rx​(θ)=⎣⎡​100​0cosθsinθ​0−sinθcosθ​⎦⎤​

Ry(θ)=[cosθ0sinθ010sinθ0cosθ]R_{y}(\theta)=\begin{bmatrix}\cos\theta & 0 & -\sin\theta\\ 0 & 1 & 0\\ \sin\theta & 0 & \cos\theta\end{bmatrix}Ry​(θ)=⎣⎡​cosθ0sinθ​010​−sinθ0cosθ​⎦⎤​

Rz(θ)=[cosθsinθ0sinθcosθ0001]R_{z}(\theta)=\begin{bmatrix}\cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1\end{bmatrix}Rz​(θ)=⎣⎡​cosθsinθ0​−sinθcosθ0​001​⎦⎤​

所以,绕任意轴旋转的矩阵为

Rx(p)Ry(q)Rz(θ)Ry(q)Rx(p)R_{x}(-p)\cdot R_{y}(-q)\cdot R_{z}(\theta)\cdot R_{y}(q)\cdot R_{x}(p)Rx​(−p)⋅Ry​(−q)⋅Rz​(θ)⋅Ry​(q)⋅Rx​(p)

这表示:

  1. 绕x轴旋转角度p使指定的旋转轴在xz平面上
  2. 绕y轴旋转角度q使指定的旋转轴与z轴重合
  3. 绕z轴旋转角度θ
  4. 绕y轴旋转角度-q
  5. 绕x轴旋转角度-p

其中,p和q的值需要用i,j,k计算出来。

欧拉角

欧拉角也可以描述三维刚体旋转,它将刚体绕过原点的轴(i,j,k)旋转θ,分解成三步(蓝色是起始坐标系,而红色的是旋转之后的坐标系。)。

在这里插入图片描述

  1. 绕z轴旋转α,使x轴与N轴重合,N轴是旋转前后两个坐标系x-y平面的交线
  2. 绕x轴(也就是N轴)旋转β,使z轴与旋转后的z轴重合
  3. 绕z轴旋转γ,使坐标系与旋转后的完全重合

按照旋转轴的顺序,该组欧拉角被称为是“zxz顺规”的。对于顺规的次序,学术界没有明确的约定。

欧拉角的旋转矩阵为:

Rz(α)Rx(β)Rz(γ)R_{z}(α)\cdot R_{x}(β)\cdot R_{z}(γ)Rz​(α)⋅Rx​(β)⋅Rz​(γ)

在旋转矩阵一节中,最先进行的旋转其矩阵在最右侧,说明该矩阵最先与点的齐次坐标相乘,旋转矩阵按照旋转的次序从右向左排列。而在欧拉角中,最先进行的旋转其旋转矩阵在最左边。这是因为,**对于前者(旋转矩阵),我们始终是以绝对参考系为参照来的,对于后者(欧拉角),我们每一次旋转的刻画都是基于刚体的坐标系。**比如,在欧拉角中的第2步,绕x轴旋转β,这里的x轴实际上是N轴了(而不是蓝色的x轴)。

为什么旋转参考系的不同会导致旋转矩阵次序的差异呢?细想一下便知,旋转矩阵左乘叠加用以描述三维变换效果的叠加,这本身就是基于绝对坐标系的,所以旋转矩阵一节没有疑问;而对于欧拉角一节的这种旋转方式,这样考虑:

  1. 如果有一个“影子坐标系3”与原坐标系重合,然后首先进行了第3步(绕z轴旋转γ);
  2. 然后有一个“影子坐标系2”也与原坐标系重合,然后与“影子坐标系3”一起(视作同一个刚体)进行了第二步;
  3. 最后一个“影子坐标系1”,与前两个坐标系一起进行了第一步。

此时,考察“影子坐标系”1和2,他们就分别落在了欧拉角旋转的两个“快照”上,而“影子坐标系3”就落在旋转后的位置上(红色的)。而在上述过程中,“影子坐标系3”就是相对于绝对坐标系依次进行了第三步,第二步,和第一步。所以欧拉角的旋转矩阵写成那样,也是行得通的。

这个想法,我猜在很多第一人称游戏中,已经得到了广泛应用了。这样,玩家对人物的控制就可以绕开人物的实时状态(位置,角度等)直接对人物的模型矩阵产生影响。

万向节死锁是欧拉角的一个弊端,这是一个直观的例子。

四元数

四元数是今天的主角,它能够很方便的刻画刚体绕任意轴的旋转。四元数是一种高阶复数,四元数q表示为:

q=(x,y,z,w)=xi+yj+zk+wq=(x,y,z,w)=xi+yj+zk+wq=(x,y,z,w)=xi+yj+zk+w

其中,i,j,k满足:

i2=j2=k2=1i^2=j^2=k^2=-1i2=j2=k2=−1

ij=k,jk=i,ki=jij=k,jk=i,ki=jij=k,jk=i,ki=j

由于i,j,k的性质和笛卡尔坐标系三个轴叉乘的性质很像,所以可以将四元数写成一个向量和一个实数组合的形式:

q=(v+w)=((x,y,z),w)q=(\vec{v}+w)=((x,y,z),w)q=(v+w)=((x,y,z),w)

可以推导出四元数的一些运算性质,包括:

  • 四元数乘法

q1q2=(v1×v2+w1v2+w2v1,w1w2v1v2)q1q2=(\vec{v_1}\times \vec{v_2}+w_1\vec{v_2}+w_2\vec{v_1}, w_1w_2-\vec{v_1}\cdot \vec{v_2})q1q2=(v1​​×v2​​+w1​v2​​+w2​v1​​,w1​w2​−v1​​⋅v2​​)

  • 共轭四元数

q=(v,w)q^*=(-\vec{v},w)q∗=(−v,w)

  • 四元数的平方模

N(q)=N(v)+w2N(q)=N(\vec{v})+w^2N(q)=N(v)+w2

  • 四元数的逆

q1=qN(q)q^{-1}=\frac{q^*}{N(q)}q−1=N(q)q∗​

四元数可以看做是向量和实数的一种更加一般的形式,向量可以视作为实部为0的四元数,而实数可以是作为虚部为0的四元数。上述四元数的运算性质也是实数或向量的运算性质的更一般的形式。

四元数可用来刻画三维空间中的旋转,绕单位向量(x,y,z)表示的轴旋转θ,可令:

q=((x,y,z)sinθ2,cosθ2)q=((x,y,z)\sin{\frac{\theta}{2}},\cos{\frac{\theta}{2}})q=((x,y,z)sin2θ​,cos2θ​)

刚体坐标系中的点p(P,0)(写成四元数的形式),旋转后的坐标p’为:

p=qpq1p'=qpq^{-1}p′=qpq−1

接下来我们来证明这一点。

首先,我们证明

qpq1=(sq)p(sq)1qpq^{-1}=(sq)p(sq)^{-1}qpq−1=(sq)p(sq)−1

其中s为实数。显然

(sq)p(sq)1=sqpq1s1=sqp1(sq)p(sq)^{-1}=sqpq^{-1}s^{-1}=sqp^{-1}(sq)p(sq)−1=sqpq−1s−1=sqp−1

此时,我们可以将q看做是单位矩阵,因为如果q不是单位矩阵,我们就可以乘以一个常数s将其化为单位矩阵。

然后,我们证明qpq^{-1}和p的模长相等

下面将q视为单位四元数:

q1=qq^{-1}=q^*q−1=q∗

四元数q的标量:

S(q)=(q+q)/2S(q)=(q+q^*)/2S(q)=(q+q∗)/2

那么:

2S(qpq1)=2S(qpq)=qpq+(qpq)=qpq+qpq=q(p+p)q=q2S(p)q=2S(p)2S(qpq^{-1})=2S(qpq^*)=qpq^*+(qpq^*)^*=qpq^*+qp^*q^*=q(p+p^*)q^*=q2S(p)q^*=2S(p)2S(qpq−1)=2S(qpq∗)=qpq∗+(qpq∗)∗=qpq∗+qp∗q∗=q(p+p∗)q∗=q2S(p)q∗=2S(p)

最后,我们证明

p=qpqp'=qpq^*p′=qpq∗

如图所示,u为旋转轴,旋转角度为σ,向量v旋转到w处。旋转到σ/2处为k(图中未标出)。
在这里插入图片描述

下面也用相同的字母指代四元数,如u就表示向量u的四元数形式((ux,uy,uz),0)。

首先,令u方向上的单位向量为u(为了方便,命名不变,后面的u都是指旋转轴方向的单位四元数),那么根据q的定义,参见四元数乘法法则:

q=(usinθ2,cosθ2)=(v×k,vk)=(v,0)(k,0)=kvq=(\vec{u}\sin{\frac{\theta}{2}},\cos{\frac{\theta}{2}})=(\vec{v}\times\vec{k},\vec{v}\cdot \vec{k})=(\vec{v},0)(-\vec{k},0)=kv^*q=(usin2θ​,cos2θ​)=(v×k,v⋅k)=(v,0)(−k,0)=kv∗

现在令

w=qvqw=qvq^*w=qvq∗

如果能证明w与v的夹角是σ,那么就说明w确实是v旋转σ得到的,整个命题就得证了。

注意v,k和w都是实部为0的单位四元数,表示单位向量,我们有:

wk=(qvq1)k=qvqk=qvvkk=qwk^*=(qvq^{-1})k^*=qvq^*k^*=qvvk^*k^*=qwk∗=(qvq−1)k∗=qvq∗k∗=qvvk∗k∗=q

所以

wk=kvwk^*=kv^*wk∗=kv∗

上面的式子拆分成实部和虚部,虚部表明w与-k的平面和k与-v的平面重合,实部表明w和-k之间的夹角与k和-v之间的夹角相等,都是π-σ/2。这就说明了w与v的夹角是σ,原命题就得证了。

标签:cos,欧拉角,旋转,四元,amp,theta,qpq
来源: https://blog.csdn.net/qq_27251141/article/details/96569393

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有