ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

GD32实战6__串口读写

2019-06-13 17:53:53  阅读:1335  来源: 互联网

标签:__ DMA USART UART1 InitStructure GD32 串口 USART1


目的

​ 串口通信是非常非常常见的一种通信方式,必须掌握的。可以从如下几个方面掌握串口通信:

  1. 串口通信原理,此处我们只研究异步串口
  2. GD32常见的几种串口通信配置

异步串口通信原理

1. 配置

​ 在了解原理之前,我们先看看串口要如何使用,如下图,只要选择正确的串口号,把收发双方的波特率、校验位、数据位、停止位配置成一致,这么就可以实现双方通信。

在这里插入图片描述

那么配置的这些参数分别代表什么意思呢?

串口号:唯一标识一个串口,当设备存在多个串口时,可以用其标识每个串口。

波特率:每秒钟传输的数据位数。表示数据传输的速率,单位bps(位每秒)。比如115200bps就表示1s可以传输115200bits的数据。

校验位:

​ even 每个字节传送整个过程中bit为1的个数是偶数个(校验位调整个数)
​ odd 每个字节穿送整个过程中bit为1的个数是奇数个(校验位调整个数)
​ none 没有校验位
​ space 校验位总为0
​ mark 校验位总为1

数据位:5678共4个选择,这是历史原因,如下

​ 5:用于电报机传26个英文字母,5位足以

​ 6:用于电报机,识别大小写字母,增加一个大小写位

​ 7:用于电脑,ASCII码7位

​ 8:用于电脑,DBCS码用于兼容ASCII和支持中文双字节

停止位:

​ 停止位是按长度来算的。串行异步通信从计时开始,以单位时间为间隔(一个单位时间就是波特率的倒数),依次接受所规定的数据位和奇偶校验位,并拼装成一个字符的并行字节;此后应接收到规定长度的停止位“1”。所以说,停止位都是“1”,1.5是它的长度,即停止位的高电平保持1.5个单位时间长度。一般来讲,停止位有1,1.5,2个单位时间三种长度。

2. 帧格式

​ 下面我们看下串行协议的帧格式,如图

在这里插入图片描述

一个帧由4部分组成,起始位+数据位+校验位+停止位,正好跟上面的配置一一对应,其中,起始位必须是低电平,停止位必须是高电平。

至此,也大致明白串口是怎么回事了。

3. 常见的串口电平标准

​ 下面几种都是串口,只是电平标准不同,导致其应用场景存在差异,通信协议和配置都是相同的,通信原理是相同的,软件实现相同,硬件电路存在差异。

TTL:

  1. 接线方式如图

  2. 高电平表示逻辑1, 低电平表示逻辑零

     ![1536645105294](assets/1536739271596.png)
    

RS232和RS485对比

  1. 抗干扰性:RS485 接口是采用平衡驱动器和差分接收器的组合,抗噪声干扰性好。RS232 接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰。
  2. 传输距离:RS485 接口的最大传输距离标准值为 1200 米(9600bps 时),实际上可达 3000 米。RS232 传输距离有限,最大传输距离标准值为 50 米,实际上也只能用在 15 米左右。
  3. 通信能力:RS-485 接口在总线上是允许连接多达128个收发器,用户可以利用单一的 RS-485 接口方便地建立起设备网络。RS-232只允许一对一通信。
  4. 传输速率:RS-232传输速率较低,在异步传输时,波特率为 20Kbps。RS-485 的数据最高传输速率为 10Mbps 。
  5. 信号线:RS485 接口组成的半双工网络,一般只需二根信号线。RS-232 口一般只使用 RXD、TXD、GND 三条线 。
  6. 电气电平值:RS-485的逻辑"1"以两线间的电压差为+(2-6) V 表示;逻辑"0"以两线间的电压差为-(2-6)V 表 示 。在 RS-232-C 中任何一条信号线的电压均为负逻辑关系。即:逻辑"1",-5- -15V;逻辑"0 " +5- +15V 。

4. 芯片如何实现串口功能

在这里插入图片描述

​ 我们知道串口的作用是为CPU和其它设备之间提供通信,本质上是把数据从其他设备搬移到自身MCU的内存中去,如上图,MCU为实现串口功能会做如上的模块划分。

  1. GPIO

    串口总线状态,默认是高电平,所以Tx应该是上拉输出,Rx应该是浮空输入。

  2. 移位器

    我们知道串口是一位位传输的,所以移位器即可以实现串口的收发。

  3. 数据寄存器

    用于存储将要发送和接收的数据,其实只要收发共用一个字节就足以。

  4. 时钟

    上述的运行过程都需要在固定时钟下才能正确运行,例如波特率。

  5. 数据由寄存器搬移到内存

    1. CPU方式,由CPU控制数据如何在数据寄存器和内存之间进行转移,例如当数据寄存器空时,将内存转移到数据寄存器中,即发送过程
    2. DMA方式,过程同CPU,那为什么还有有DMA呢?因为数据搬移省去CPU的参与,也就意味着CPU可以去忙其它事情,效率自然就高了。
  6. 状态寄存器

    1. 我们粗略的思考下,在整个串口的传输过程中,肯定会有各式各样的状态,例如,收到数据,数据异常,帧错误,数据发送完毕,数据寄存器空了等等,这些都需要状态寄存器存储。
    2. 再深入思考下,当我们需要及时的处理上述状态时,靠CPU轮询显然太慢了,所以肯定需要中断,再增加一组中断状态寄存器。
  7. 配置寄存器

    ​ 上述情况那么多,代表不同的配置,肯定需要几组配置寄存器。例如,中断的使能控制等

功能设计

​ 如果明白了原理,那么自然就知道该如何配置一个串口了,无非就是从芯片手册中找到相应的寄存器进行配置而已。

​ 在”串口发送“例子中,已经接触了串口的发送功能,现在我们把这个例子再度深入,实现串口的接收功能。实现一个回显功能,即PC通过串口向GD32写入数据,然后GD32把数据原封不动返回给PC。

轮询方式
VOID DRV_UART1_PollTest(VOID)
{
    U8 ch = 0;
    
    while (1)
    {
        if (USART_GetBitState(USART1, USART_FLAG_RBNE) != RESET)
        {
            ch = (U8)USART_DataReceive(USART1);
            UART1_SendChar(ch);
        }
    }
}

VOID DRV_UART1_PollInit(VOID)
{
    UART1_GpioInit();
    UART1_Config();
    USART_Enable(USART1, ENABLE);
}

效果如图

在这里插入图片描述

中断方式

注:中断优先级部分,我会抽单独章节分析。

必须注意下面这两个函数的区别,

USART_GetBitState(USART1, USART_FLAG_RBNE); /* 非中断使用 */
USART_GetIntBitState(USART1, USART_INT_RBNE);/* 中断内使用 */

中断方式处理代码如下:

VOID USART1_IRQHandler(VOID)
{
    if (USART_GetIntBitState(USART1, USART_INT_RBNE) != RESET)
    {
        if (gUart1RxCount >= DRV_UART1_BUFLEN)
        {
            memset(gUart1RxBuf, 0, sizeof(gUart1RxBuf));
            gUart1RxCount = 0;
        }
        gUart1RxBuf[gUart1RxCount] = (U8)USART_DataReceive(USART1);
        gUart1RxCount++;
    }

    if (USART_GetIntBitState(USART1, USART_INT_IDLEF) != RESET)
    {
        gUart1RxBufFlag++;
    }
}

VOID DRV_UART1_InterruptTest(VOID)
{
    U8 rxCount = 0;

    while (1)
    {
        if (gUart1RxBufFlag > 0)
        {
            for (rxCount = 0; rxCount < gUart1RxCount; rxCount++)
            {
                UART1_SendChar(gUart1RxBuf[rxCount]);
            }
            memset(gUart1RxBuf, 0, sizeof(gUart1RxBuf));
            gUart1RxCount = 0;
            gUart1RxBufFlag = 0;
        }
    }
}

VOID DRV_UART1_InterruptInit(VOID)
{
    UART1_GpioInit();
    UART1_Config();
    UART1_NvicConfiguration();
    USART_Enable(USART1, ENABLE);
    USART_INT_Set(USART1, USART_INT_RBNE, ENABLE);
    USART_INT_Set(USART1, USART_INT_IDLEF, ENABLE);
}
DMA方式

​ 注:DMA细节我会抽单独章节分析,此处只写一个DMA轮询方式的例子。

static VOID UART1_DmaRxConfig(IN U8 *buf, IN U32 len)
{
    DMA_InitPara DMA_InitStructure;
    
    DMA_Enable(DMA1_CHANNEL5, DISABLE);
    
    /* USART1 RX DMA1 Channel (triggered by USART1 Rx event) Config */
    DMA_DeInit(DMA1_CHANNEL5);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (U32) &(USART1->DR);
    DMA_InitStructure.DMA_MemoryBaseAddr = (U32)buf;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PERIPHERALSRC;
    DMA_InitStructure.DMA_BufferSize = len;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PERIPHERALINC_DISABLE;
    DMA_InitStructure.DMA_MemoryInc = DMA_MEMORYINC_ENABLE;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PERIPHERALDATASIZE_BYTE;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MEMORYDATASIZE_BYTE;
    DMA_InitStructure.DMA_Mode = DMA_MODE_NORMAL;
    DMA_InitStructure.DMA_Priority = DMA_PRIORITY_VERYHIGH;
    DMA_InitStructure.DMA_MTOM = DMA_MEMTOMEM_DISABLE;
    DMA_Init(DMA1_CHANNEL5, &DMA_InitStructure);
    DMA_Enable(DMA1_CHANNEL5, ENABLE);
}

VOID DRV_UART1_DmaInit(VOID)
{
    UART1_GpioInit();
    UART1_Config();
    RCC_AHBPeriphClock_Enable(RCC_AHBPERIPH_DMA1, ENABLE);
    UART1_DmaRxConfig(gUart1RxBuf, DRV_UART1_BUFLEN);
    USART_Enable(USART1, ENABLE);
    USART_DMA_Enable(USART1, (USART_DMAREQ_TX | USART_DMAREQ_RX), ENABLE);
}

static VOID UART1_DmaSend(IN U8 *buf, IN U32 len)
{
    DMA_InitPara DMA_InitStructure;

    DMA_Enable(DMA1_CHANNEL4, DISABLE);

    /* USART1_Tx_DMA_Channel (triggered by USART1 Tx event) Config */
    DMA_DeInit(DMA1_CHANNEL4);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (U32) &(USART1->DR);
    DMA_InitStructure.DMA_MemoryBaseAddr = (U32)buf;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PERIPHERALDST;
    DMA_InitStructure.DMA_BufferSize = len;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PERIPHERALINC_DISABLE;
    DMA_InitStructure.DMA_MemoryInc = DMA_MEMORYINC_ENABLE;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PERIPHERALDATASIZE_BYTE;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MEMORYDATASIZE_BYTE;
    DMA_InitStructure.DMA_Mode = DMA_MODE_NORMAL;
    DMA_InitStructure.DMA_Priority = DMA_PRIORITY_VERYHIGH;
    DMA_InitStructure.DMA_MTOM = DMA_MEMTOMEM_DISABLE;
    DMA_Init(DMA1_CHANNEL4, &DMA_InitStructure);
    
    DMA_Enable(DMA1_CHANNEL4, ENABLE);
    while (DMA_GetBitState(DMA1_FLAG_TC4) == RESET)
    {
    }
}

VOID DRV_UART1_DmaTest(VOID)
{
    while (1)
    {
        if (USART_GetBitState(USART1, USART_FLAG_IDLEF) != RESET)
        {
            UART1_DmaSend(gUart1RxBuf, DRV_UART1_BUFLEN);
            memset(gUart1RxBuf, 0, DRV_UART1_BUFLEN);
            UART1_DmaRxConfig(gUart1RxBuf, DRV_UART1_BUFLEN);
            USART_DataReceive(USART1); /* 清除USART_FLAG_IDLEF */
        }
    }
}

总结

​ 串口是一种非常常见的通信总线,必须掌握。如果上面的原理和例子理解了,我相信用GPIO口虚拟一个窗口并不是什么难事。

代码路径

https://github.com/YaFood/GD32F103/tree/master/TestUART

标签:__,DMA,USART,UART1,InitStructure,GD32,串口,USART1
来源: https://blog.csdn.net/qq_17854661/article/details/91878328

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有