ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

强化学习-PPO

2022-09-12 11:01:09  阅读:180  来源: 互联网

标签:dim return self torch PPO 学习 state action 强化


1.PPO是采用截断来对动作的输出进行约束,保证相同的状态下,同样的输出

ratio = torch.exp(log_probs - old_log_probs)
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * advantage # 约束

2.使用一个累积的状态优势值来对ratio进行加权

# 累积状态优势
def compute_advantage(gamma, lmbda, td_delta): td_delta = td_delta.detach().numpy() advantage_list = [] advantage = 0.0 for delta in td_delta[::-1]: advantage = gamma * lmbda * advantage + delta # 时分差分算法, 表示从头到尾的影响 advantage_list.append(advantage) advantage_list.reverse() # 序列反转 return torch.tensor(advantage_list, dtype=torch.float)
#状态优势值加权两次动作的概率分布
surr1 = ratio * advantage

3.actor的损失函数, 当advantage>0时,最大化ratio的比例, 当advantage < 0 时,最小化ratio的比例,即好的动作增加概率值,不好的动作减少概率值

ratio = torch.exp(log_probs - old_log_probs)
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1 - self.eps,
                                1 + self.eps) * advantage
actor_loss = torch.mean(-torch.min(surr1, surr2))  # PP0损失函数

train.py

import gym
import torch
from model import PPO, PPOContinuous
import rl_utils
import matplotlib.pyplot as plt

actor_lr = 1e-4
critic_lr = 5e-3
num_episodes = 2000
hidden_dim = 128
gamma = 0.9
lmbda = 0.9
epochs = 10
eps = 0.2

device = torch.device("cuda") if torch.cuda.is_available() \
        else torch.device('cpu')
env_name = 'Pendulum-v0'
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda,
            epochs, eps, gamma, device)

return_list = rl_utils.train_on_policy_agent(env, agent, num_episodes)
episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

model.py 

import gym
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import rl_utils


class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return F.softmax(self.fc2(x), dim=1)


class ValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim):
        super(ValueNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, 1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return self.fc2(x)


class PPO:
    """PPO算法, 采用截断方法"""
    def __init__(self, state_dim, hidden_dim, action_dim, action_lr, critic_lr,
                 lmbda, epochs, eps, gamma, device):
        self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
                                                lr=action_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
                                                 lr=critic_lr)
        self.gamma = gamma
        self.lmbda = lmbda
        self.epochs = epochs # 一条序列的数据用来训练轮数
        self.eps = eps # PPO中截断范围的参数
        self.device = device

    def take_action(self, state):
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        probs = self.actor(state)
        action_dist = torch.distributions.Categorical(probs)
        action = action_dist.sample()
        return action.item()

    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(
            self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)

        td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)

        td_delta = td_target - self.critic(states)
        advantage = rl_utils.compute_advantage(self.gamma, self.lmbda,
                                               td_delta.cpu()).to(self.device)

        old_log_probs = torch.log(self.actor(states).gather(1,
                                                            actions)).detach()
        for _ in range(self.epochs):
            log_probs = torch.log(self.actor(states).gather(1, actions))
            ratio = torch.exp(log_probs - old_log_probs)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1 - self.eps,
                                1 + self.eps) * advantage
            actor_loss = torch.mean(-torch.min(surr1, surr2))  # PP0损失函数
            critic_loss = torch.mean(
                F.mse_loss(self.critic(states), td_target.detach())
            )
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()
            critic_loss.backward()
            self.actor_optimizer.step()
            self.critic_optimizer.step()



class PolocyNetContinuous(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolocyNetContinuous, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc_mu = torch.nn.Linear(hidden_dim, action_dim)
        self.fc_std = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        mu = 2.0 * torch.tanh(self.fc_mu(x))
        std = F.softplus(self.fc_std(x))
        return mu, std


class PPOContinuous:
    """处理连续动作的PPO算法"""
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                lmbda, epochs, eps, gamma, device):

        self.actor = PolocyNetContinuous(state_dim, hidden_dim, action_dim)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
                                                lr=actor_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
                                                 lr=critic_lr)
        self.gamma = gamma
        self.lmbda = lmbda
        self.epochs = epochs
        self.eps = eps
        self.device = device

    def take_action(self, state):
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        mu, sigma = self.actor(state)
        action_dist = torch.distributions.Normal(mu, sigma)
        action = action_dist.sample()
        return [action.item()]

    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(
            self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)
        rewards = (rewards + 8.0) / 8.0 # 和TRPO一样, 对奖励修改, 方便训练
        td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)

        td_delta = td_target - self.critic(states)
        advantage = rl_utils.compute_advantage(self.gamma, self.lmbda, 
                                               td_delta.cpu()).to(self.device)
        
        mu, std = self.actor(states)
        action_dists = torch.distributions.Normal(mu.detach(), std.detach())
        # 动作是正态分布
        old_log_probs = action_dists.log_prob(actions)

        for _ in range(self.epochs):
            mu, std = self.actor(states)
            action_dists = torch.distributions.Normal(mu, std)
            log_probs = action_dists.log_prob(actions) # 用于输入该动作的概率密度
            ratio = torch.exp(log_probs - old_log_probs)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * advantage
            actor_loss = torch.mean(-torch.min(surr1, surr2))
            critic_loss = torch.mean(
                F.mse_loss(self.critic(states), td_target.detach())
            )
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()
            critic_loss.backward()
            self.actor_optimizer.step()
            self.critic_optimizer.step()

rl_utils.py

from tqdm import tqdm
import numpy as np
import torch
import collections
import random


class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)

    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        transitions = random.sample(self.buffer, batch_size)
        state, action, reward, next_state, done = zip(*transitions)
        return np.array(state), action, reward, np.array(next_state), done

    def size(self):
        return len(self.buffer)


def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0))
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size - 1, 2)
    begin = np.cumsum(a[:window_size - 1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))


def train_on_policy_agent(env, agent, num_episodes):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes / 10)):
                episode_return = 0
                transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
                state = env.reset()
                done = False
                # 一局放入到一块数据里面
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    transition_dict['states'].append(state)
                    transition_dict['actions'].append(action)
                    transition_dict['next_states'].append(next_state)
                    transition_dict['rewards'].append(reward)
                    transition_dict['dones'].append(done)
                    state = next_state
                    episode_return += reward
                return_list.append(episode_return)
                agent.update(transition_dict)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),
                                      'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes / 10)):
                episode_return = 0
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    replay_buffer.add(state, action, reward, next_state, done)
                    state = next_state
                    episode_return += reward
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                        transition_dict = {'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r,
                                           'dones': b_d}
                        agent.update(transition_dict)
                return_list.append(episode_return)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),
                                      'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def compute_advantage(gamma, lmbda, td_delta):
    td_delta = td_delta.detach().numpy()
    advantage_list = []
    advantage = 0.0
    for delta in td_delta[::-1]:
        advantage = gamma * lmbda * advantage + delta  # 时分差分算法, 表示从头到尾的影响
        advantage_list.append(advantage)
    advantage_list.reverse() # 序列反转
    return torch.tensor(advantage_list, dtype=torch.float)

 

标签:dim,return,self,torch,PPO,学习,state,action,强化
来源: https://www.cnblogs.com/my-love-is-python/p/16685692.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有