ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

神经网络——浅浅的做个笔记

2022-09-10 20:31:59  阅读:193  来源: 互联网

标签:ypred sigmoid h2 self h1 笔记 神经网络 np 浅浅的


有四个激活函数

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-10,10)
y_sigmoid = 1/(1+np.exp(-x))
y_tanh = (np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x))

fig = plt.figure()
 #plot sigmoid
ax = fig.add_subplot(221)
ax.plot(x,y_sigmoid)
ax.grid()
ax.set_title('(a) Sigmoid')

# plot tanh
ax = fig.add_subplot(222)
ax.plot(x,y_tanh)
ax.grid()
ax.set_title('(b) Tanh')

# plot relu
ax = fig.add_subplot(223)
y_relu = np.array([0*item  if item<0 else item for item in x ]) 
ax.plot(x,y_relu)
ax.grid()
ax.set_title('(c) ReLu')

#plot leaky relu
ax = fig.add_subplot(224)
y_relu = np.array([0.2*item  if item<0 else item for item in x ]) 
ax.plot(x,y_relu)
ax.grid()
ax.set_title('(d) Leaky ReLu')

plt.tight_layout()

我们来看一个小实例

 

 

 把男人定义为1,女人定义为0

 

 

 输入身高和体重,来预测男人和女人,因此有两个输入,一个输出,我们不妨设两个隐藏层

 

代码如下:

 


   import numpy as np


   def sigmoid(x):
  # Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
   return 1 / (1 + np.exp(-x))


# 求导
def deriv_sigmoid(x):
  # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
  fx = sigmoid(x)
  return fx * (1 - fx)
# 损失函数
def mse_loss(y_true, y_pred):
  # y_true and y_pred are numpy arrays of the same length.
  return ((y_true - y_pred) ** 2).mean()
# 神经网络
class OurNeuralNetwork:
  '''
  A neural network with:
    - 2 inputs
    - a hidden layer with 2 neurons (h1, h2)
    - an output layer with 1 neuron (o1)

  *** DISCLAIMER ***:
  The code below is intended to be simple and educational, NOT optimal.
  Real neural net code looks nothing like this. DO NOT use this code.
  Instead, read/run it to understand how this specific network works.
  '''
  def __init__(self):
    # Weights
    self.w1 = np.random.normal()
    self.w2 = np.random.normal()
    self.w3 = np.random.normal()
    self.w4 = np.random.normal()
    self.w5 = np.random.normal()
    self.w6 = np.random.normal()

    # Biases
    self.b1 = np.random.normal()
    self.b2 = np.random.normal()
    self.b3 = np.random.normal()

  def feedforward(self, x):
    # x is a numpy array with 2 elements.
    h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
    h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
    o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
    return o1

  def train(self, data, all_y_trues):
    '''
    - data is a (n x 2) numpy array, n = # of samples in the dataset.
    - all_y_trues is a numpy array with n elements.
      Elements in all_y_trues correspond to those in data.
    '''
#学习率
learn_rate = 0.1 epochs = 1000 # number of times to loop through the entire dataset for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): # --- Do a feedforward (we'll need these values later) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmoid(sum_o1) y_pred = o1 # --- Calculate partial derivatives. # --- Naming: d_L_d_w1 represents "partial L / partial w1" d_L_d_ypred = -2 * (y_true - y_pred) # Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) # Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1) # Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2) d_h2_d_b2 = deriv_sigmoid(sum_h2) # --- Update weights and biases # Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 # Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 # Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 # --- Calculate total loss at the end of each epoch if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) print("Epoch %d loss: %.3f" % (epoch, loss)) # Define dataset data = np.array([ [-2, -1], # Alice [25, 6], # Bob [17, 4], # Charlie [-15, -6], # Diana ]) all_y_trues = np.array([ 0, # Alice 1, # Bob 1, # Charlie 0, # Diana ]) # Train our neural network! network = OurNeuralNetwork() network.train(data, all_y_trues) # Make some predictions emily = np.array([-7, -3]) # 128 pounds, 63 inches frank = np.array([20, 2]) # 155 pounds, 68 inches print("Emily: %.3f" % network.feedforward(emily)) print("Frank: %.3f" % network.feedforward(frank))


Emily: 0.035
Frank: 0.961
 

 

标签:ypred,sigmoid,h2,self,h1,笔记,神经网络,np,浅浅的
来源: https://www.cnblogs.com/kk-style/p/16678285.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有