ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

强化学习-Double DQN(两个DQN模型)

2022-09-04 22:04:45  阅读:197  来源: 互联网

标签:dim return Double 模型 list state action DQN self


对于之前提到的DQN模型, 损失函数使用的

Q(state) = reward + Q(nextState)max

Q(state)由训练网络生成, Q(nextState)max由目标网络生成

这种损失函数会存在问题,即当Q(nextState)max总是大于0时,那么Q(state)总是在不停的增大,同时Q(nextState)max也在不断的增大, 即Q(state)存在被高估的情况

Double DQN的解决方法是,由Q(nextstate)训练网络来决定方向,由Q(nextState)目标网络来决定Qvalue的数值, 方向来获取目标函数的数值

max_action = self.q_net(next_states).max(1)[1].view(-1, 1) # 训练函数 
max_next_q_values = self.target_q_net(next_states).gather(1, max_action) # 目标函数

场景: 倒立摆的环境, 一共11个动作,动作[0,1,2,3,...9,10], 需要转换为力矩[-2, -1.6, -1.2, ....1.2, 1.6, 2] 转化成离散的, 因为DQN只能处理离散的数据
train.py 

import random
import gym
import numpy as np
import collections
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from tqdm import tqdm
from model import DQN
import rl_utils
from rl_utils import ReplayBuffer


lr = 1e-2 # 学习率
num_episodes = 200 #迭代次数
hidden_dim = 128 #隐藏层
gamma = 0.98
epsilon = 0.01
target_update = 50
batch_size = 64

device = torch.device("cuda") if torch.cuda.is_available() else torch.device('cpu')

buffer_size = 5000 # 观察数据的数量
minimal_size = 1000
replay_buffer = ReplayBuffer(buffer_size)
env_name = "Pendulum-v0"
env = gym.make(env_name)
state_dim = env.observation_space.shape[0] # 这里的输入是4个变量 速度, 位置, 尖端速度, 杆的角度
action_dim = 11

def dis_to_con(disrete_action, env, action_dim):
    action_lowbound = env.action_space.low[0]
    action_upbound = env.action_space.high[0]
    return action_lowbound + (disrete_action / (action_dim - 1)) * (action_upbound - action_lowbound)

def train_DQN(agent, env, num_episodes, replay_buffer, minimal_size,
          batch_size):
    return_list = []
    max_q_value_list = []
    max_q_value = 0

    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes/10)):
                episode_return = 0
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    # 使用累计来表示max_q_value

                    max_q_value = agent.max_q_value(
                        state) * 0.005 + max_q_value * 0.995

                    max_q_value_list.append(max_q_value)
                    action_continuous = dis_to_con(action, env, agent.action_dim)  # 将角度转换为离散数据
                    next_state, reward, done, _ = env.step([action_continuous]) # 将角度输入到环境中获得下一个状态, 奖励, 是否停止
                    replay_buffer.add(state, action, reward, next_state, done) # 加入到缓冲区
                    state = next_state
                    episode_return += reward 
                    # 当buffer的数量超过一定数量的时候, 进行Q网络训练
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size=batch_size) # 从缓冲区取数据
                        transition_dict = {
                            'states':b_s,
                            'actions':b_a,
                            'next_states':b_ns,
                            'rewards': b_r,
                            'dones': b_d,
                        }
                        agent.update(transition_dict) # 更新网络

                return_list.append(episode_return)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({
                        'episode':
                        '%d' % (num_episodes / 10 * i + i_episode),
                        'return':
                        '%.3f' % np.mean(return_list[-10:])
                    })
                pbar.update(1)
    return return_list, max_q_value_list



agent = DQN(state_dim, hidden_dim, action_dim, lr,
            gamma, epsilon, target_update, device)

return_list, max_q_value_list = train_DQN(agent, env, num_episodes, replay_buffer, minimal_size,
                                      batch_size)
episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('DQN on {}'.format(env_name))
plt.show()

frames_list = list(range(len(max_q_value_list)))
plt.plot(frames_list, max_q_value_list)
plt.axhline(0, c='orange', ls='--')
plt.axhline(10, c='red', ls='--')
plt.xlabel('Frames')
plt.ylabel('Q value')
plt.title('DQN on {}'.format(env_name))
plt.show()

 

 model.py 

import numpy as np
import torch.nn
import torch.nn.functional as F



class Qnet(torch.nn.Module):
    '''只有一层的隐藏层的Q网络'''
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(Qnet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return self.fc2(x)

class DQN:
    """DQN算法"""
    def __init__(self, state_dim, hidden_dim, action_dim, learning_rate,
                 gamma, epsilon, target_update, device, dqn_type="DoubleDQN_dim"):
        self.action_dim = action_dim
        self.q_net = Qnet(state_dim, hidden_dim,
                                 self.action_dim).to(device)
        # 目标网络
        self.target_q_net = Qnet(state_dim, hidden_dim,
                                 self.action_dim).to(device)
        #使用Adam优化器
        self.optimizer = torch.optim.Adam(self.q_net.parameters(),
                                          lr=learning_rate)
        self.gamma = gamma # 折扣因子
        self.epsilon = epsilon  # epsilon-贪婪策略
        self.target_update = target_update # 目标网络更新频率
        self.count = 0 #计数器,记录更新次数
        self.device = device
        self.dqn_type = dqn_type


    '''输入到模型获得动作, 使用的epsilon'''
    def take_action(self, state):
        if np.random.random() < self.epsilon:
            action = np.random.randint(self.action_dim)
        else:
            state = torch.tensor([state], dtype=torch.float).to(self.device)
            action = self.q_net(state).argmax().item() # item表示实际的数据

        return action

    '''用来更新网络参数'''
    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)

        q_values = self.q_net(states).gather(1, actions) # 获得对应动作的Q值
        # 下一个状态的最大Q值
        if self.dqn_type == "DoubleDQN":
            max_action = self.q_net(next_states).max(1)[1].view(-1, 1)
            max_next_q_values = self.target_q_net(next_states).gather(1, max_action)
        else:
            max_next_q_values = self.target_q_net(next_states).max(1)[0].view(-1, 1)


        q_target = rewards + self.gamma * max_next_q_values
        dqn_loss = torch.mean(F.mse_loss(q_values, q_target))
        self.optimizer.zero_grad()
        dqn_loss.backward()
        self.optimizer.step()

        if self.count % self.target_update == 0:
            self.target_q_net.load_state_dict(
                self.q_net.state_dict())  # 更新目标网络

        self.count += 1

    def max_q_value(self, state):
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        return self.q_net(state).max().item()

rl_utils.py 

from tqdm import tqdm
import numpy as np
import torch
import collections
import random


class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)

    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        transitions = random.sample(self.buffer, batch_size)
        state, action, reward, next_state, done = zip(*transitions)
        return np.array(state), action, reward, np.array(next_state), done

    def size(self):
        return len(self.buffer)


def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0))
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size - 1, 2)
    begin = np.cumsum(a[:window_size - 1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))


def train_on_policy_agent(env, agent, num_episodes):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes / 10)):
                episode_return = 0
                transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    transition_dict['states'].append(state)
                    transition_dict['actions'].append(action)
                    transition_dict['next_states'].append(next_state)
                    transition_dict['rewards'].append(reward)
                    transition_dict['dones'].append(done)
                    state = next_state
                    episode_return += reward
                return_list.append(episode_return)
                agent.update(transition_dict)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),
                                      'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes / 10)):
                episode_return = 0
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    replay_buffer.add(state, action, reward, next_state, done)
                    state = next_state
                    episode_return += reward
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                        transition_dict = {'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r,
                                           'dones': b_d}
                        agent.update(transition_dict)
                return_list.append(episode_return)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),
                                      'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def compute_advantage(gamma, lmbda, td_delta):
    td_delta = td_delta.detach().numpy()
    advantage_list = []
    advantage = 0.0
    for delta in td_delta[::-1]:
        advantage = gamma * lmbda * advantage + delta
        advantage_list.append(advantage)
    advantage_list.reverse()
    return torch.tensor(advantage_list, dtype=torch.float)

 

标签:dim,return,Double,模型,list,state,action,DQN,self
来源: https://www.cnblogs.com/my-love-is-python/p/16656223.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有