ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

AtCoder Beginner Contest 267

2022-09-04 02:01:00  阅读:175  来源: 互联网

标签:std AtCoder return Beginner int poly 267 const size


E - Erasing Vertices 2

做法1

观察可得:对于某个时刻,贪心删当前代价最小的点肯定是最优的。

但是删一个点会减少相邻接的点的代价。然后就想到了堆,但是这个堆需要支持decrease-key操作。

decrease-key 这个操作std::priority_queue并不支持,但是其实二叉堆也能做到 \(O(\log n)\)。

pbds 里的堆支持decrease-key,接口为 modify,然后就完事了。

做法2

这个是官方题解给出的做法,大概就是二分答案,然后通过搜索把代价小于等于当前二分的值的点都删掉,如果所有点都能删掉说明当前二分的代价可行。

AC代码
// Problem: E - Erasing Vertices 2
// Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267)
// URL: https://atcoder.jp/contests/abc267/tasks/abc267_e
// Memory Limit: 1024 MB
// Time Limit: 4000 ms
//
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>

#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);

#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() ""
#endif

using i64 = int64_t;
using u64 = uint64_t;

void Initialize();
void SolveCase(int Case);

int main(int argc, char* argv[]) {
  CPPIO;
  int T = 1;
  // std::cin >> T;
  for (int t = 1; t <= T; ++t) {
    SolveCase(t);
  }
  return 0;
}

void Initialize() {}

#include <ext/pb_ds/priority_queue.hpp>

template <typename T>
using min_heap = __gnu_pbds::priority_queue<T, std::greater<T>, __gnu_pbds::pairing_heap_tag>;

void SolveCase(int Case) {
  int n, m;
  std::cin >> n >> m;

  std::vector<int> a(n);
  for (int i = 0; i < n; ++i) {
    std::cin >> a[i];
  }

  std::vector<std::vector<int>> g(n);
  for (int i = 0; i < m; ++i) {
    int u, v;
    std::cin >> u >> v;
    --u, --v;
    g[u].push_back(v);
    g[v].push_back(u);
  }

  std::vector<i64> s(n);
  for (int i = 0; i < n; ++i) {
    for (int v : g[i])
      s[v] += a[i];
  }

  min_heap<std::pair<i64, int>> q;
  std::vector<min_heap<std::pair<i64, int>>::point_iterator> p(n);
  for (int i = 0; i < n; ++i) {
    p[i] = q.push({s[i], i});
  }

  i64 ans = 0;
  while (!q.empty()) {
    auto [cost, id] = q.top();
    q.pop();

    ans = std::max(ans, cost);
    p[id] = nullptr;

    for (int v : g[id]) {
      if (p[v] == nullptr)
        continue;

      auto [first, second] = *p[v];
      q.modify(p[v], {first - a[id], second});
    }
  }

  std::cout << ans << "\n";
}

F - Exactly K Steps

有个结论:假设树的直径的两个端点分别为 \(a\) 和 \(b\),那么对于树中任意一点 \(u\) ,\(a\) 和 \(b\) 中之一必定满足其是树中所有点中离\(u\)距离最大的点。用反证法可以证明。

由此,对于某个询问\(u, k\),要么能在 \(u\) 到 \(a\) 或 \(u\) 到 \(b\) 的路径中找到答案,要么无解。

做法1

想着把直径端点之一搞成根,此时直径是一条一端为根一端为叶子的链。

对于一个点,往父亲的方向条一定会跳到这条链上。

然后先跳到这条链上,假设此时位于\(u\),那么\(u\)所在的长链一定是直径,这个时候再枚举往父亲的方向跳,还是往长链的方向条,就能枚举到\(u\) 到 \(a\) 和 \(u\) 到 \(b\) 的路径。

往父亲的方向跳和往长链的方向条都可以用倍增加速。

做法2

这个是官方题解给出的做法,大概就是离线然后分别以 \(a\) 和 \(b\) 作为根,一共跑两次,这样就只需要考虑往父亲的方向跳的情况,也能枚举到\(u\) 到 \(a\) 和 \(u\) 到 \(b\) 的路径,而且相对做法1会简单一点。

AC代码
// Problem: F - Exactly K Steps
// Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267)
// URL: https://atcoder.jp/contests/abc267/tasks/abc267_f
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>

#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);

#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() ""
#endif

using i64 = int64_t;
using u64 = uint64_t;

void Initialize();
void SolveCase(int Case);

int main(int argc, char* argv[]) {
  CPPIO;
  int T = 1;
  // std::cin >> T;
  for (int t = 1; t <= T; ++t) {
    SolveCase(t);
  }
  return 0;
}

void Initialize() {}

void SolveCase(int Case) {
  int n, m = 20;
  std::cin >> n;

  std::vector<std::vector<int>> g(n);
  for (int i = 0; i < n - 1; ++i) {
    int u, v;
    std::cin >> u >> v;
    --u, --v;
    g[u].push_back(v);
    g[v].push_back(u);
  }

  // make one end of diameter the root.
  std::vector<int> dep(n), f(n);
  int rt = 0;
  std::function<void(int, int, int)> dfs1 = [&](int u, int fa, int depth) {
    dep[u] = depth;
    f[u] = fa;
    if (dep[u] > dep[rt])
      rt = u;

    for (int v : g[u]) {
      if (v == fa)
        continue;

      dfs1(v, u, depth + 1);
    }
  };
  dfs1(0, 0, 0);
  int temp = rt;
  dfs1(rt, rt, 0);
  rt = temp;
  logd(rt);
  logd(dep);

  // binary lifting for k-th ancester.
  std::vector<std::vector<int>> up(n, std::vector<int>(m));
  std::function<void(int, int)> dfs2 = [&](int u, int fa) {
    if (u == rt) {
      std::fill(up[u].begin(), up[u].end(), rt);
    } else {
      up[u][0] = fa;
      for (int i = 1; i < m; ++i) {
        up[u][i] = up[up[u][i - 1]][i - 1];
      }
    }

    for (int v : g[u]) {
      if (v == fa)
        continue;

      dfs2(v, u);
    }
  };
  dfs2(rt, rt);
  logd(up);

  // binary lifting for longest chain in subtree.
  std::vector<int> len(n), son(n);
  std::vector<std::vector<int>> down(n, std::vector<int>(m));
  std::function<void(int, int)> dfs3 = [&](int u, int fa) {
    son[u] = -1;
    len[u] = 0;

    for (int v : g[u]) {
      if (v == fa)
        continue;

      dfs3(v, u);
      if (son[u] == -1 || len[v] > len[son[u]]) {
        son[u] = v;
        len[u] = len[v] + 1;
      }
    }

    if (son[u] == -1) {
      std::fill(down[u].begin(), down[u].end(), u);
    } else {
      down[u][0] = son[u];
      for (int i = 1; i < m; ++i) {
        down[u][i] = down[down[u][i - 1]][i - 1];
      }
    }
  };
  dfs3(rt, rt);

  std::vector<int> in_diameter(n, false);
  {
    int x = rt;
    while (x != -1) {
      in_diameter[x] = true;
      x = son[x];
    }
  }

  // return v whose distance from u is k by:
  // - jump up in the path to root.
  // - jump down in the longest chain in subtree whose root is u.
  auto Q = [&](int u, int k) {
    if (dep[u] >= k) {
      int x = u;
      for (int i = m - 1; i >= 0; --i) {
        if ((k >> i) & 1)
          x = up[x][i];
      }
      return x + 1;
    }

    if (len[u] >= k) {
      int x = u;
      for (int i = m - 1; i >= 0; --i) {
        if ((k >> i) & 1)
          x = down[x][i];
      }
      return x + 1;
    }

    return -1;
  };

  int q;
  std::cin >> q;
  for (int _ = 0; _ < q; ++_) {
    int u, k, r;
    std::cin >> u >> k;
    --u;

    r = Q(u, k);
    if (r != -1) {
      std::cout << r << "\n";
      continue;
    }

    if (in_diameter[u]) {
      std::cout << "-1\n";
      continue;
    }

    int y = u;
    for (int i = m - 1; i >= 0; --i) {
      if (not in_diameter[up[y][i]])
        y = up[y][i];
    }
    y = f[y];
    k -= dep[u] - dep[y];
    u = y;

    std::cout << Q(u, k) << "\n";
  }
}

G - Increasing K Times

问题转换成 \(a\) 有多少个排列 \(A\) 满足恰好有 \(k\) 个 \(i\) 满足\(A_i < A_{i + 1}\)。

考虑从小到大把 \(a\) 中的元素加入 \(A\) ,从而构成一个 \(a\) 的排列 \(A\) 。为了防止边界条件的讨论,不妨令初始时 \(A = [0, 0]\),然后再加入元素。这样相比原本的情况中会多算一个满足\(A_i < A_{i + 1}\) 的 \(i\),因为 \(A_n\) 一定大于 \(0\) ,此时改成求恰好有 \(k + 1\) 个满足条件的\(i\)即可。

然后考虑动态规划,令 \(dp_{i, j}\) 表示插入前 \(i\) 个元素,恰好有 \(j\) 个 \(x\) 满足 \(A_x < A_{x + 1}\)。

假设现在要插入\(y\),这个操作要么令满足条件的 \(x\) 的数量保持不变,要么令满足条件的 \(x\) 的数量增加一。

什么时候会增加呢,只有将 \(y\) 插到满足 \(A_{x} \ge A_{x + 1}\) 的 \(A_x\) 之后才会令满足条件的 \(x\) 的数量增加。假设之前已经插入了 \(i\) 个元素,有 \(j\) 个满足条件的 \(x\),然后插入了 \(z\) 个 \(y\),那么一共有 \(i - j - z\) 个位置,将 \(y\) 插到这个位置会使满足条件的 \(x\) 数量增加一,剩余 \(j + z\) 个位置会使满足条件的 \(x\) 数量保持不变。

AC代码
// Problem: G - Increasing K Times
// Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267)
// URL: https://atcoder.jp/contests/abc267/tasks/abc267_g
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>

#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);

#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() ""
#endif

using i64 = int64_t;
using u64 = uint64_t;

void Initialize();
void SolveCase(int Case);

int main(int argc, char* argv[]) {
  CPPIO;
  int T = 1;
  // std::cin >> T;
  for (int t = 1; t <= T; ++t) {
    SolveCase(t);
  }
  return 0;
}

void Initialize() {}

template <typename ValueType, ValueType mod_, typename SupperType = int64_t>
class Modular {
 private:
  ValueType value_;

  ValueType normalize(ValueType value) const {
    if (value >= 0 && value < mod_)
      return value;
    value %= mod_;
    if (value < 0)
      value += mod_;
    return value;
  }

  ValueType power(ValueType value, size_t exponent) const {
    ValueType result = 1;
    ValueType base = value;
    while (exponent) {
      if (exponent & 1)
        result = SupperType(result) * base % mod_;
      base = SupperType(base) * base % mod_;
      exponent >>= 1;
    }
    return result;
  }

 public:
  Modular() : value_(0) {}

  Modular(const ValueType& value) : value_(normalize(value)) {}

  ValueType value() const { return value_; }

  Modular inv() const { return Modular(power(value_, mod_ - 2)); }

  Modular power(size_t exponent) const { return Modular(power(value_, exponent)); }

  friend Modular operator+(const Modular& lhs, const Modular& rhs) {
    ValueType result = lhs.value() + rhs.value() >= mod_ ? lhs.value() + rhs.value() - mod_
                                                         : lhs.value() + rhs.value();
    return Modular(result);
  }

  friend Modular operator-(const Modular& lhs, const Modular& rhs) {
    ValueType result = lhs.value() - rhs.value() < 0 ? lhs.value() - rhs.value() + mod_
                                                     : lhs.value() - rhs.value();
    return Modular(result);
  }

  friend Modular operator*(const Modular& lhs, const Modular& rhs) {
    ValueType result = SupperType(1) * lhs.value() * rhs.value() % mod_;
    return Modular(result);
  }

  friend Modular operator/(const Modular& lhs, const Modular& rhs) {
    ValueType result = SupperType(1) * lhs.value() * rhs.inv().value() % mod_;
    return Modular(result);
  }
};
template <typename StreamType, typename ValueType, ValueType mod, typename SupperType = int64_t>
StreamType& operator<<(StreamType& out, const Modular<ValueType, mod, SupperType>& modular) {
  return out << modular.value();
}
template <typename StreamType, typename ValueType, ValueType mod, typename SupperType = int64_t>
StreamType& operator>>(StreamType& in, Modular<ValueType, mod, SupperType>& modular) {
  ValueType value;
  in >> value;
  modular = Modular<ValueType, mod, SupperType>(value);
  return in;
}
// using Mint = Modular<int, 1'000'000'007>;
using Mint = Modular<int, 998'244'353>;

class Binom {
 private:
  std::vector<Mint> f, g;

 public:
  Binom(int n) {
    f.resize(n + 1);
    g.resize(n + 1);

    f[0] = Mint(1);
    for (int i = 1; i <= n; ++i)
      f[i] = f[i - 1] * Mint(i);
    g[n] = f[n].inv();
    for (int i = n - 1; i >= 0; --i)
      g[i] = g[i + 1] * Mint(i + 1);
  }
  Mint operator()(int n, int m) {
    if (n < 0 || m < 0 || m > n)
      return Mint(0);
    return f[n] * g[m] * g[n - m];
  }
};

void SolveCase(int Case) {
  int n, k;
  std::cin >> n >> k;
  ++k;

  std::vector<int> a(n + 1);
  for (int i = 1; i <= n; ++i)
    std::cin >> a[i];
  std::sort(a.begin() + 1, a.end());

  std::vector<int> same(n + 1);
  for (int i = 1; i <= n; ++i) {
    if (a[i] != a[i - 1])
      same[i] = 0;
    else
      same[i] = same[i - 1] + 1;
  }

  std::vector<Mint> dp(k + 1, Mint(0));
  dp[0] = Mint(1);
  for (int i = 1; i <= n; ++i) {
    std::vector<Mint> temp(k + 1, Mint(0));
    for (int j = 0; j <= k; ++j) {
      temp[j] = temp[j] + Mint(j + same[i]) * dp[j];
      if (j + 1 <= k)
        temp[j + 1] = temp[j + 1] + Mint(i - j - same[i]) * dp[j];
    }
    dp = temp;
  }

  std::cout << dp[k].value() << "\n";
}

Ex - Odd Sum

考虑动态规划,令 \(dp_{i, 0/1}\) 表示选奇数或者偶数个元素且所选元素之和为 \(i\) 的方案数,然后类似背包的DP就能求,但是复杂度爆炸。

考虑 \(f_{0}(x) = \sum_i a_i x^i\) ,\([x^i]f_0 (x)\)表示选偶数个元素且元素和为 \(i\) 的方案数,类似可得\(f_{1}(x)\)。

假设现在有两个数组,对应的多项式分别为\(f_{0/1}\)和\(g_{0/1}\),那么对于两个数组的并集对应的多项式\(h\)有:

\[h_0 = f_0 * g_0 + f_1 * g_1\\ h_1 = f_0 * g_1 + f_1 * g_0\\ \]

把每个 \(a_i\) 都看成独立的数组,不断两两合并的到 \(a\),对应的多项式也两两合并,得到 \(a\) 对应的多项式\(f_{0/1}\),答案即为\([x^m]f_1\)。

用类似分治FFT的过程跑能做到\(O(m \log m \log n)\)的时间复杂度。

AC代码
// Problem: Ex - Odd Sum
// Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267)
// URL: https://atcoder.jp/contests/abc267/tasks/abc267_h
// Memory Limit: 1024 MB
// Time Limit: 4000 ms
//
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>

#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);

#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() ""
#endif

using i64 = int64_t;
using u64 = uint64_t;

void Initialize();
void SolveCase(int Case);

int main(int argc, char* argv[]) {
  CPPIO;
  int T = 1;
  // std::cin >> T;
  for (int t = 1; t <= T; ++t) {
    SolveCase(t);
  }
  return 0;
}

void Initialize() {}

namespace Polynomial {

constexpr int P = 998244353, G = 3;
std::vector<int> rev, roots{0, 1};

int power(int a, int b) {
  int r = 1;
  while (b) {
    if (b & 1)
      r = 1ll * r * a % P;
    a = 1ll * a * a % P;
    b >>= 1;
  }
  return r;
}

void dft(std::vector<int>& a) {
  int n = a.size();
  if (int(rev.size()) != n) {
    int k = __builtin_ctz(n) - 1;
    rev.resize(n);
    for (int i = 0; i < n; ++i)
      rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
  }
  for (int i = 0; i < n; ++i)
    if (rev[i] < i)
      std::swap(a[i], a[rev[i]]);
  if (int(roots.size()) < n) {
    int k = __builtin_ctz(roots.size());
    roots.resize(n);
    while ((1 << k) < n) {
      int e = power(G, (P - 1) >> (k + 1));
      for (int i = 1 << (k - 1); i < (1 << k); ++i) {
        roots[2 * i] = roots[i];
        roots[2 * i + 1] = 1ll * roots[i] * e % P;
      }
      ++k;
    }
  }
  for (int k = 1; k < n; k *= 2) {
    for (int i = 0; i < n; i += 2 * k) {
      for (int j = 0; j < k; ++j) {
        int u = a[i + j];
        int v = 1ll * a[i + j + k] * roots[k + j] % P;
        int x = u + v;
        if (x >= P)
          x -= P;
        a[i + j] = x;
        x = u - v;
        if (x < 0)
          x += P;
        a[i + j + k] = x;
      }
    }
  }
}

void idft(std::vector<int>& a) {
  int n = a.size();
  std::reverse(a.begin() + 1, a.end());
  dft(a);
  int inv = power(n, P - 2);
  for (int i = 0; i < n; ++i)
    a[i] = 1ll * a[i] * inv % P;
}

struct poly {
  std::vector<int> a;

  poly() {}
  poly(int f0) { a = {f0}; }
  poly(const std::vector<int>& f) : a(f) {
    while (!a.empty() && !a.back())
      a.pop_back();
  }
  poly(const std::vector<int>& f, int n) : a(f) { a.resize(n); }
  int size() const { return a.size(); }
  int deg() const { return a.size() - 1; }
  int operator[](int idx) const {
    if (idx < 0 || idx >= size())
      return 0;
    return a[idx];
  }
  std::string to_string() const {
    std::stringstream ss;
    ss << "poly: ";
    for (int v : a)
      ss << v << " ";
    return ss.str();
  }
  poly mulxk(int k) const {
    auto b = a;
    b.insert(b.begin(), k, 0);
    return poly(b);
  }
  poly modxk(int k) const {
    k = std::min(k, size());
    return poly(std::vector<int>(a.begin(), a.begin() + k));
  }
  poly alignxk(int k) const { return poly(a, k); }
  poly divxk(int k) const {
    if (size() <= k)
      return poly();
    return poly(std::vector<int>(a.begin() + k, a.end()));
  }
  friend poly operator+(const poly& f, const poly& g) {
    int k = std::max(f.size(), g.size());
    std::vector<int> res(k);
    for (int i = 0; i < k; ++i) {
      res[i] = f[i] + g[i];
      if (res[i] >= P)
        res[i] -= P;
    }
    return poly(res);
  }
  friend poly operator-(const poly& f, const poly& g) {
    int k = std::max(f.size(), g.size());
    std::vector<int> res(k);
    for (int i = 0; i < k; ++i) {
      res[i] = f[i] - g[i];
      if (res[i] < 0)
        res[i] += P;
    }
    return poly(res);
  }
  friend poly operator*(const poly& f, const poly& g) {
    int sz = 1, k = f.size() + g.size() - 1;
    while (sz < k)
      sz *= 2;
    std::vector<int> p = f.a, q = g.a;
    p.resize(sz);
    q.resize(sz);
    dft(p);
    dft(q);
    for (int i = 0; i < sz; ++i)
      p[i] = 1ll * p[i] * q[i] % P;
    idft(p);
    return poly(p);
  }
  friend poly operator/(const poly& f, const poly& g) { return f.divide(g).first; }
  friend poly operator%(const poly& f, const poly& g) { return f.divide(g).second; }
  poly& operator+=(const poly& f) { return (*this) = (*this) + f; }
  poly& operator-=(const poly& f) { return (*this) = (*this) - f; }
  poly& operator*=(const poly& f) { return (*this) = (*this) * f; }
  poly& operator/=(const poly& f) { return (*this) = divide(f).first; }
  poly& operator%=(const poly& f) { return (*this) = divide(f).second; }
  poly derivative() const {
    if (a.empty())
      return poly();
    int n = a.size();
    std::vector<int> res(n - 1);
    for (int i = 0; i < n - 1; ++i)
      res[i] = 1ll * (i + 1) * a[i + 1] % P;
    return poly(res);
  }
  poly integral() const {
    if (a.empty())
      return poly();
    int n = a.size();
    std::vector<int> res(n + 1);
    for (int i = 0; i < n; ++i)
      res[i + 1] = 1ll * a[i] * power(i + 1, P - 2) % P;
    return poly(res);
  }
  poly rev() const { return poly(std::vector<int>(a.rbegin(), a.rend())); }
  poly inv(int m) const {
    poly x(power(a[0], P - 2));
    int k = 1;
    while (k < m) {
      k *= 2;
      x = (x * (2 - modxk(k) * x)).modxk(k);
    }
    return x.modxk(m);
  }
  poly log(int m) const { return (derivative() * inv(m)).integral().modxk(m); }
  poly exp(int m) const {
    poly x(1);
    int k = 1;
    while (k < m) {
      k *= 2;
      x = (x * (1 - x.log(k) + modxk(k))).modxk(k);
    }
    return x.modxk(m);
  }
  poly sqrt(int m) const {
    poly x(1);
    int k = 1;
    while (k < m) {
      k *= 2;
      x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
    }
    return x.modxk(m);
  }
  poly sin() const {
    int i = power(G, (P - 1) / 4);
    poly p = i * (*this);
    p = p.exp(p.size());

    poly q = (P - i) * (*this);
    q = q.exp(q.size());

    poly r = (p - q) * power(2 * i % P, P - 2);
    return r;
  }
  poly cos() const {
    int i = power(G, (P - 1) / 4);
    poly p = i * (*this);
    p = p.exp(p.size());

    poly q = (P - i) * (*this);
    q = q.exp(q.size());

    poly r = (p + q) * power(2, P - 2);
    return r;
  }
  poly tan() const { return sin() / cos(); }
  poly cot() const { return cos() / sin(); }
  poly arcsin() {
    poly sq = (*this) * (*this).modxk(size());
    for (int i = 0; i < size(); ++i)
      sq.a[i] = sq.a[i] ? P - sq.a[i] : 0;
    sq.a[0] = 1 + sq.a[0];
    if (sq.a[0] >= P)
      sq.a[0] -= P;
    poly r = (derivative() * sq.sqrt(size()).inv(size())).integral();
    return r;
  }
  poly arccos() {
    poly r = arcsin();
    for (int i = 0; i < size(); ++i)
      r.a[i] = r.a[i] ? P - r.a[i] : 0;
    return r;
  }
  poly arctan() {
    poly sq = (*this) * (*this).modxk(size());
    sq.a[0] = 1 + sq.a[0];
    if (sq.a[0] >= P)
      sq.a[0] -= P;
    poly r = (derivative() * sq.inv(size())).integral();
    return r;
  }
  poly arccot() {
    poly r = arctan();
    for (int i = 0; i < size(); ++i)
      r.a[i] = r.a[i] ? P - r.a[i] : 0;
    return r;
  }
  poly mulT(const poly& b) const {
    if (b.size() == 0)
      return poly();
    int n = b.size();
    return ((*this) * b.rev()).divxk(n - 1);
  }
  std::pair<poly, poly> divide(const poly& g) const {
    int n = a.size(), m = g.size();
    if (n < m)
      return make_pair(poly(), a);

    poly fR = rev();
    poly gR = g.rev().alignxk(n - m + 1);
    poly gRI = gR.inv(gR.size());

    poly qR = (fR * gRI).modxk(n - m + 1);

    poly q = qR.rev();

    poly r = ((*this) - g * q).modxk(m - 1);

    return std::make_pair(q, r);
  }
  std::vector<int> eval(std::vector<int> x) const {
    if (size() == 0)
      return std::vector<int>(x.size(), 0);
    const int n = std::max(int(x.size()), size());
    std::vector<poly> q(4 * n);
    std::vector<int> ans(x.size());
    x.resize(n);
    std::function<void(int, int, int)> build = [&](int p, int l, int r) {
      if (r - l == 1) {
        q[p] = std::vector<int>{1, (P - x[l]) % P};
      } else {
        int m = (l + r) / 2;
        build(2 * p, l, m);
        build(2 * p + 1, m, r);
        q[p] = q[2 * p] * q[2 * p + 1];
      }
    };
    build(1, 0, n);
    std::function<void(int, int, int, const poly&)> work = [&](int p, int l, int r,
                                                               const poly& num) {
      if (r - l == 1) {
        if (l < int(ans.size()))
          ans[l] = num[0];
      } else {
        int m = (l + r) / 2;
        work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l));
        work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
      }
    };
    work(1, 0, n, mulT(q[1].inv(n)));
    return ans;
  }
};

}  // namespace Polynomial
using Polynomial::poly;

void SolveCase(int Case) {
  int n, m;
  std::cin >> n >> m;

  std::vector<int> a(n);
  for (int i = 0; i < n; ++i)
    std::cin >> a[i];

  std::vector<std::pair<poly, poly>> all(n);
  std::vector<int> temp(11);
  for (int i = 0; i < n; ++i) {
    temp[0] = 1;
    poly f(temp);
    temp[0] = 0;

    temp[a[i]] = 1;
    poly g(temp);
    temp[a[i]] = 0;

    all[i] = std::make_pair(f, g);
  }

  while (all.size() > 1) {
    std::vector<std::pair<poly, poly>> next;

    for (int i = 0; i < all.size(); i += 2) {
      if (i == all.size() - 1) {
        next.push_back(all[i]);
      } else {
        next.push_back({
            all[i].first * all[i + 1].first + all[i].second * all[i + 1].second,
            all[i].first * all[i + 1].second + all[i].second * all[i + 1].first,
        });
      }
    }

    all = std::move(next);
  }

  poly f = all[0].second;
  std::cout << f[m] << "\n";
}

标签:std,AtCoder,return,Beginner,int,poly,267,const,size
来源: https://www.cnblogs.com/zengzk/p/16654142.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有