ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

69BERT

2022-08-17 23:00:54  阅读:120  来源: 互联网

标签:69BERT hiddens self ffn shape num size


点击查看代码
import math
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

#@save
class PositionWiseFFN(nn.Module):
    """基于位置的前馈网络"""
    # 全连接
    # num_step会变 序列长度
    # 所以序列当中每一个元素做一个全连接
    # (batch_size, num_step, ffn_num_input) ->  (batch_size, num_step, ffn_num_outputs)
    def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
                 **kwargs):
        super(PositionWiseFFN, self).__init__(**kwargs)
        self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
        self.relu = nn.ReLU()
        self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)

    def forward(self, X):
        # 当输入不是二维时,前面的都当作样本维,最后一维当作特征维
        return self.dense2(self.relu(self.dense1(X)))
# 改变张量的最里层维度的尺寸,会改变成基于位置的前馈网络的输出尺寸。
# 单隐藏层的MLP
ffn = PositionWiseFFN(4, 4, 8)
ffn.eval()
print('ffn.shape : ', ffn(torch.ones((2, 3, 4))).shape)
"""ffn.shape :  torch.Size([2, 3, 8])"""

# 层归一化
# 样本 比较稳定,不会应为长度发生变化而变化太大
ln = nn.LayerNorm(3)
# 特征 长度不同
bn = nn.BatchNorm1d(3)
X = torch.tensor([[2, 3, 1], [3, 1, 2]], dtype=torch.float32)
# X = torch.arange(18, dtype=torch.float32).reshape(2, 3, 3)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))
"""
layer norm: tensor([[ 0.0000,  1.2247, -1.2247],
        [ 1.2247, -1.2247,  0.0000]], grad_fn=<NativeLayerNormBackward0>) 
batch norm: tensor([[-1.0000,  1.0000, -1.0000],
        [ 1.0000, -1.0000,  1.0000]], grad_fn=<NativeBatchNormBackward0>)
"""
# 残差连接和层规范化
#@save
class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        # 输入为(1, 3, 5, 5),layernorm的normalized_shape为[3, 5, 5],也就是说对后三维度进行归一化操作
        self.ln = nn.LayerNorm(normalized_shape)

    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

add_norm = AddNorm([3, 4], 0.5)
add_norm.eval()
print('add_norm.shape : ', add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape)
"""add_norm.shape :  torch.Size([2, 3, 4])"""
# 实现编码器中的一个层
#@save
class EncoderBlock(nn.Module):
    """transformer编码器块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout,
            use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)

    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

# transformer编码器中的任何层都不会改变其输入的形状
X = torch.ones((2, 100, 24))
valid_lens = torch.tensor([3, 2])
# (key_size, query_size, value_size, num_hiddens,norm_shape,
#  ffn_num_input, ffn_num_hiddens, num_heads,dropout)
encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5)
print('encoder.shape : ', encoder_blk(X, valid_lens).shape)
"""encoder.shape :  torch.Size([2, 100, 24])"""
# transformer编码器
#@save
class TransformerEncoder(d2l.Encoder):
    """transformer编码器"""
    def __init__(self, vocab_size, key_size, query_size, value_size,
                 num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
                 num_heads, num_layers, dropout, use_bias=False, **kwargs):
        super(TransformerEncoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module(
                "block"+str(i),
                EncoderBlock(key_size, query_size, value_size, num_hiddens,
                    norm_shape, ffn_num_input, ffn_num_hiddens,
                    num_heads, dropout, use_bias)
            )

    def forward(self, X, valid_lens, *args):
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,然后再与位置编码相加。
        # 大小要匹配
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        # 权重图
        self.attention_weights = [None] * len(self.blks)
        # enumerate多用于在for循环中得到计数,利用它可以同时获得索引和值,
        # 即需要index和value值的时候可以使用enumerate
        for i, blk in enumerate(self.blks):
            X = blk(X, valid_lens)
            self.attention_weights[i] = blk.attention.attention.attention_weights
        return X

encoder = TransformerEncoder(200, 24, 24, 24, 24, [100, 24], 24, 48, 8, 2, 0.5)
encoder.eval()
print('encoder.shape : ', encoder(torch.ones((2, 100), dtype=torch.long), valid_lens).shape)
"""encoder.shape :  torch.Size([2, 100, 24])"""
# transformer解码器也是由多个相同的层组成
class DecoderBlock(nn.Module):
    """解码器中第i个块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, i, **kwargs):
        super(DecoderBlock, self).__init__(**kwargs)
        self.i = i
        self.attention1 = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.attention2 = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout)
        self.addnorm2 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm3 = AddNorm(norm_shape, dropout)

    def forward(self, X, state):
        enc_outputs, enc_valid_lens = state[0], state[1]
        # 训练阶段,输出序列的所有词元都在同一时间处理,
        # 因此state[2][self.i]初始化为None。
        # 预测阶段,输出序列是通过词元一个接着一个解码的,
        # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
        if state[2][self.i] is None:
            key_values = X
        else:
            key_values = torch.cat((state[2][self.i], X), axis=1)
        state[2][self.i] = key_values
        if self.training:
            batch_size, num_steps, _ = X.shape
            # dec_valid_lens的开头:(batch_size,num_steps),
            # 其中每一行是[1,2,...,num_steps]
            dec_valid_lens = torch.arange(
                1, num_steps + 1, device=X.device).repeat(batch_size, 1)
        else:
            dec_valid_lens = None

        # 自注意力
        # dec_valid_lens training时不关注之后的内容
        X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
        Y = self.addnorm1(X, X2)
        # 编码器-解码器注意力。
        # enc_outputs的开头:(batch_size,num_steps,num_hiddens)
        # enc_valid_lens 哪些为padding的内容
        Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
        Z = self.addnorm2(Y, Y2)
        return self.addnorm3(Z, self.ffn(Z)), state

decoder_blk = DecoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5, 0)
decoder_blk.eval()
X = torch.ones((2, 100, 24))
state = [encoder_blk(X, valid_lens), valid_lens, [None]]
print('decoder.shape : ', decoder_blk(X, state)[0].shape)


# transformer解码器
class TransformerDecoder(d2l.AttentionDecoder):
    def __init__(self, vocab_size, key_size, query_size, value_size,
                 num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
                 num_heads, num_layers, dropout, **kwargs):
        super(TransformerDecoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.num_layers = num_layers
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module(
                "block"+str(i),
                DecoderBlock(key_size, query_size, value_size, num_hiddens,
                             norm_shape, ffn_num_input, ffn_num_hiddens,
                             num_heads, dropout, i))
        self.dense = nn.Linear(num_hiddens, vocab_size)

    def init_state(self, enc_outputs, enc_valid_lens, *args):
        return [enc_outputs, enc_valid_lens, [None] * self.num_layers]

    def forward(self, X, state):
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,然后再与位置编码相加。
        # 大小要匹配
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        # 注意力权重
        self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
        for i, blk in enumerate(self.blks):
            X, state = blk(X, state)
            # 解码器自注意力权重
            self._attention_weights[0][i] = blk.attention1.attention.attention_weights
            # “编码器-解码器”自注意力权重
            self._attention_weights[1][i] = blk.attention2.attention.attention_weights
        return self.dense(X), state

    @property
    def attention_weights(self):
        return self._attention_weights

# 训练
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)

encoder = TransformerEncoder(
    len(src_vocab), key_size, query_size, value_size, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    num_layers, dropout)
decoder = TransformerDecoder(
    len(tgt_vocab), key_size, query_size, value_size, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
    translation, dec_attention_weight_seq = d2l.predict_seq2seq(
        net, eng, src_vocab, tgt_vocab, num_steps, device, True)
    print(f'{eng} => {translation}, ',
          f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

标签:69BERT,hiddens,self,ffn,shape,num,size
来源: https://www.cnblogs.com/g932150283/p/16597091.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有