ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

(SGP 2006)Quadratic Bending Model

2022-08-12 12:00:51  阅读:190  来源: 互联网

标签:Bending bending isometric SGP energy ij under Model where


A Quadratic Bending Model for Inextensible Surfaces(SGP 2006)

预备知识:

Laplace-Beltrami operator: 在微分几何中,拉普拉斯算子可以推广为定义在曲面,或更一般地黎曼流形与伪流形上,函数的算子。这个更一般的算子叫做Laplace-Beltrami operator

1. Introduction

​ Our contribution is to consider the class of isometric surface deformations, arriving at an expression for bending energy which is quadratic in positions.

  • 此方法适合于stretching stiffness远大于bending stiffness的情况,即:主要应用于布料

1.1 Continuous setting

Consider the bending energy of a deformable surface \(S\):

\[E_b(S)=\frac12\int_SH^2dA \]

where

  • \(H\): the mean curvature
  • \(dA\): the differential area

then rewrite it as:

\[E_b(S)=\frac12\int_S\left<\Delta x,\Delta x\right>_{R^3}dA \]

where:

  • \(\left<,\right>_{R^3}\): the inner product of \(R^3\).
  • \(\Delta\): the Laplace-Beltrami
  • \(H=\Delta x\).
  • \(x\): the embedding of the surface

1.2 Central observation

  • For inextensible surfaces, \(E_b(S)\) is quadratic in positions.

  • \(E_b(S)\) together with the assumption of isometric deformation is called isometric bending model(IBM).

Our contribution is to present an analogous discrete IBM that is quadratic in positions. Its linear gradient and constant Hessian present an economic model for computing bending forces and their derivatives, enabling fast time-integration of cloth dynamics.

2. Discrete IBM

2.1 数学模型

Donoting the surface's vertex position vector by: \(x=(x_0,x_1,...,x_{n-1})^T\in R^{3n}\), then we write \(E_b(x)\) as:

\[E_b(x)=\frac12x^TQx=\frac12\sum_{i,j}Q_{ij}\left<x_i,x_j\right>_{R^3} \]

\(E_b(x)\) 需要满足的性质:

  1. quadratic in \(x\) under isometric deformations(已满足)
  2. invariant under rigid motions of the mesh
    • if and only if \(\sum_iQ_{ij}=\sum_jQ_{ij}=0\)
  3. invariant under uniform scaling
    • \(Q\) must scale with \(1/s^2\) if the whole mesh is scaled by a global factor \(s\).
    • since \(E_b\) is an energy, \(Q\) must be positive semi-define.
    • we can then write: \(Q=L^TM^{-1}L\),
      • \(L\) is invariant under scaling and \(\sum_jL_{ij}=0\).
      • \(M\) is symmetric positive define and scales with \(s^2\).

A discrete IBM is then any energy of the form:

\[E_b(x)=\frac12x^T(L^TM^{-1}L)x=\frac12x^TQx \]

One way to obtain a suitable M and L is to discretize the smooth Laplacian, ∆, using the finite element (FE) method:

\[L_{ij}=\int_S\left<\nabla\Phi_i,\nabla\Phi_j\right>dA\\ M_{ij}=\int_S\Phi_i\cdot\Phi_jdA \]

where:

  • \(\{\Phi_i\}\): some Finite Element basis
  • \(L\): the Finite Element stiffness matrix is discrete Laplacian
  • \(M^{-1}\): the Finite Element mass matrix inverse simplifies to division by area in a lumped mass matrix approximation
  • \(Lx\): the discrete analogue of the smooth mean curvatur vector, \(\Delta x\).

2.2 Implementation

In a one-time precomputation step, the constant Hessian \(Q\), is assembled by considering contributions from each local matrix, \(Q(e_i)\), centered about interior edge \(e_i\) with stencil consisting of:

  • the triangles, \(t_0,t_1\),
  • their edges \(e_i\),
  • their vertices, \(x_0,x_1,x_2,x_3\).

image

以上图为例:

\[Q(e_0)=\frac3{(A_0+A_1)}K^T_0K_0 \]

where:

  • \(A_i\) the area of triangles \(t_i\).

  • \(K_0\) is the row vector

  • \[K_0=(c_{03}+c_{04},c_{01}+c_{02},-c_{01}-c_{03},-c_{02}-c_{04}) \]

  • where \(c_{jk}=cot\angle e_j,e_k=1/tan\angle e_j,e_k\).

The local energy is obtained by:

\[E_b(e_i)=\frac12(x_0,x_1,x_2,x_4)Q_{e_i}(x_0,x_1,x_2,x_4)^T \]

The global (total) energy of the system is obtained by summing over all local contributions corresponding to interior edges.

标签:Bending,bending,isometric,SGP,energy,ij,under,Model,where
来源: https://www.cnblogs.com/Heskey0/p/16579415.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有