ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

人工智能学习开始前言

2022-06-21 13:03:37  阅读:151  来源: 互联网

标签:前言 人工智能 标签 模型 学习 数据 我们 输入


1,训练过程通常包含如下步骤:

  1. 从一个随机初始化参数的模型开始,这个模型基本毫不“智能”。
  2. 获取一些数据样本(例如,音频片段以及对应的是否{是,否}标签)。
  3. 调整参数,使模型在这些样本中表现得更好。
  4. 重复第2步和第3步,直到模型在任务中的表现令你满意。

 

 

 

 

2,无论我们遇到什么类型的机器学习问题,基本上存在这些组件:

  1. 我们可以学习的数据(data)。
  2. 如何转换数据的模型(model)。
  3. 一个目标函数(objective function),用来量化模型的有效性。
  4. 调整模型参数以优化目标函数的算法(algorithm)。

2.1

固定长度的特征向量是一个方便的属性,它有助于量化学习大量样本。

然而,并不是所有的数据都可以用“固定长度”的向量表示。 以图像数据为例,如果它们全部来自标准显微镜设备,那么“固定长度”是可取的; 但是如果图像数据来自互联网,它们很难具有相同的分辨率或形状。 这时,我们可以考虑将图像裁剪成标准尺寸,但这种办法很局限,有丢失信息的风险。 此外,文本数据更不符合“固定长度”的要求。 比如,对于亚马逊等电子商务网站上的客户评论,有些文本数据很简短(比如“好极了”),有些则长篇大论。 与传统机器学习方法相比,深度学习的一个主要优势是可以处理不同长度的数据。

一般来说,我们拥有的数据越多,我们的工作就越容易。 当我们有了更多的数据,我们通常可以训练出更强大的模型。 在没有大数据集的情况下,许多令人兴奋的深度学习模型黯然失色。就算一些深度学习模型在小数据集上能够工作,但其效能并不比传统方法高。

但是仅仅拥有海量的数据是不够的,我们还需要正确的数据。此外,不均衡的数据集也是不好的,比如要训练一个皮肤癌识别模型,但它(在训练数据集中)从未“见过”黑色皮肤的人群,这个模型就会顿时束手无策。

 

2.2

大多数机器学习会涉及到数据的转换。 比如,我们建立一个“摄取照片并预测笑脸”的系统。

2.3

学习,是指自主提高模型完成某些任务的效能。 但是,什么才算真正的提高呢? 在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,我们称之为目标函数(objective function)。

当任务在试图预测数值时,最常见的损失函数是平方误差(squared error),即预测值与实际值之差的平方。 当试图解决分类问题时,最常见的目标函数是最小化错误率,即预测与实际情况不符的样本比例。

我们通常将可用数据集分成两部分:训练数据集用于拟合模型参数,测试数据集用于评估拟合的模型。你可以把“一个模型在训练数据集上的效能”想象成“一个学生在模拟考试中的分数”。 这个分数用来为一些真正的期末考试做参考,即使成绩令人鼓舞,也不能保证期末考试成功。 换言之,测试性能可能会显著偏离训练性能。 当一个模型在训练集上表现良好,但不能推广到测试集时,我们说这个模型是“过拟合”。

2.4

一旦我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,我们接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。 深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。 简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果你仅对该参数进行少量变动,训练集损失会朝哪个方向移动。 然后,它在可以减少损失的方向上优化参数。

 

3,

监督学习(supervised learning)擅长在“给定输入特征”的情况下预测标签。 每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输入特征映射到标签,即预测。

举一个具体的例子: 假设我们需要预测患者是否会心脏病发作,那么观察结果“心脏病发作”或“心脏病没有发作”将是我们的标签。 输入特征可能是生命体征,如心率、舒张压和收缩压。

 

 

 

4,

回归(regression)是最简单的监督学习任务之一。当标签取任意数值时,我们称之为回归问题。 我们的目标是生成一个模型,它的预测非常接近实际标签值。

比方说,假设我们有一组房屋销售数据表格,其中每行对应于每个房子,每列对应于一些相关的属性,例如房屋的面积、卧室的数量、浴室的数量以及到镇中心的步行分钟数等等。

5,

在分类问题中,我们希望模型能够预测样本属于哪个类别(category,正式称为类(class))。

例如,对于手写数字,我们可能有10类,分别数字0到9。 最简单的分类问题是只有两类,我们称之为“二元分类”。 例如,数据集可能由动物图像组成,标签可能是猫狗两类。 在回归中,我们训练一个回归函数来输出一个数值; 而在分类中,我们训练一个分类器,它的输出即为预测的类别。与解决回归问题不同,分类问题的常见损失函数被称为交叉熵(cross-entropy)

6,

以上大多数问题都具有固定大小的输入和产生固定大小的输出。 例如,在预测房价的问题中,我们考虑从一组固定的特征:平方英尺、卧室数量、浴室数量、步行到市中心的时间; 图像分类问题中,输入为固定尺寸的图像,输出则为固定数量(有关每一个类别)的预测概率; 在这些情况下,模型只会将输入作为生成输出的“原料”,而不会“记住”输入的具体内容。

如果输入的样本之间没有任何关系,以上模型可能完美无缺。 但是如果输入是连续的,我们的模型可能就需要拥有“记忆”功能。 比如,我们该如何处理视频片段呢? 在这种情况下,每个视频片段可能由不同数量的帧组成。 通过前一帧的图像,我们可能对后一帧中发生的事情更有把握。 语言也是如此,机器翻译的输入和输出都为文字序列。

序列学习需要摄取输入序列或预测输出序列,或两者兼而有之。 具体来说,输入和输出都是可变长度的序列,例如机器翻译和从语音中转录文本。

7,

到目前为止,所有的例子都与监督学习有关,即我们向模型提供巨大数据集:每个样本包含特征和相应标签值。你的老板可能会给你一大堆数据,然后让你用它做一些数据科学研究,却没有对结果有要求。 我们称这类数据中不含有“目标”的机器学习问题为无监督学习(unsupervised learning)。

那么无监督学习可以回答什么样的问题呢?我们来看看下面的例子:

!聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?

!主成分分析(principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。这可以用来描述实体及其关系,例如“罗马”=“意大利”+“法国”+“巴黎”。

!因果关系(causality)和概率图模型(probabilistic graphical models)问题:我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系?

!生成对抗性网络(generative adversarial networks):为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的非结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试,它是无监督学习的另一个重要而令人兴奋的领域。

8,

如果你对使用机器学习开发与环境交互并采取行动感兴趣,那么你最终可能会专注于强化学习(reinforcement learning)。 这可能包括应用到机器人、对话系统,甚至开发视频游戏的人工智能(AI)。 深度强化学习(deep reinforcement learning)将深度学习应用于强化学习的问题,是非常热门的研究领域。比如AlphaGo 程序在棋盘游戏围棋中击败了世界冠军,是两个突出强化学习的例子。

在强化学习问题中,agent在一系列的时间步骤上与环境交互。 在每个特定时间点,agent从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后agent从环境中获得奖励(reward)。 此后新一轮循环开始,agent接收后续观察,并选择后续操作,依此类推。强化学习的目标是产生一个好的策略(policy)。 强化学习agent选择的“动作”受策略控制。

 

标签:前言,人工智能,标签,模型,学习,数据,我们,输入
来源: https://www.cnblogs.com/rossxp/p/16396455.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有