ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

General Seniority 学习笔记(1): BCS

2022-06-16 18:33:27  阅读:212  来源: 互联网

标签:chi General beta alpha Seniority pi hat nu BCS


General Seniority 学习笔记(1): BCS

我学习了参考文献 [1,2],把里面的核心公式推导核对整理了,因为觉得有点意思。做完笔记我顺手写了个代码,还没来得及核对。

下一步可以考虑投影 broken-pair 的优化和投影,即 seniority 取次极小的内秉态做投影。

参考文献:

[1] 贾力源,"Application of the variational principle to a coherent-pair condensate: The BCS case", PRC99, 014302 (2019).

[2] 俞一信 et al., "Nucleon pair truncation of the shell model for medium-heavy nuclei", to be submitted.

1. 时间反演轨道上的配对凝聚

所有轨道和自己的时间反演轨道,进行两两配对 \((\alpha, \bar{\alpha})\),然后定义时间反演轨道上的配对:

\[\hat{P}^\dagger_\alpha = \hat{c}^\dagger_\alpha \hat{c}^\dagger_\bar{\alpha}. \]

1.1 配对与配对凝聚

配对定义为

\[\hat{P}^\dagger = \sum_{\alpha \in \Theta} \nu_\alpha \hat{P}^\dagger_\alpha, \]

其中 \(\Theta\) 表示非集体对序号集合,序号个数是单粒子轨道数的一半。单粒子轨道可以是形变基,也可以是球形基,只要两两配对即可。General Seniority 的全部变化,就是这样的配对的凝聚、对破缺。

一般假定基态对应着配对凝聚,

\[|\phi_N \rangle = \frac{1}{ \sqrt{\chi_N} } (\hat{P}^\dagger)^N | 0 \rangle, \]

其中 \(\chi_N\) 是归一化因子,

\[\chi_N = \langle 0 | \hat{P}^N (\hat{P}^\dagger)^N | 0 \rangle. \]

Block 掉非集体对 \(\alpha\) 以后,态矢变为

\[|\phi^{[\alpha]}_N \rangle = \frac{1}{\sqrt{\chi^{[\alpha]}_N}}( \hat{P}^\dagger - \nu_\alpha \hat{P}^\dagger_\alpha)^N | 0 \rangle, \]

其中,归一化因子

\[\chi^{[\alpha]}_N = \langle 0 |\hat{P}^N \hat{P}_\alpha \hat{P}^\dagger_\alpha(\hat{P}^\dagger)^N | 0 \rangle, \]

中间加上 \(\hat{P}_\alpha \hat{P}^\dagger_\alpha\) 起的作用就是 block 掉非集体对 \(\alpha\)。

1.2 归一化因子的计算

如果已经 block 掉 \(\gamma_1, \gamma_2, \cdots, \gamma_r\),则有

\[\chi^{[\gamma_1 \cdots \gamma_r]}_N = N \sum_\alpha \nu^2_\alpha \chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{N-1}, \\ \chi^{[\gamma_1 \cdots \gamma_r]}_N - \chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{N} = N^2 \nu^2_\alpha \chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{N-1}. \]

另外,因为 \(\chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{0} = 0\),所以可以构造迭代:

\[\left\{\chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{0} \right\} \rightarrow \chi^{[\gamma_1 \cdots \gamma_r]}_{1} \rightarrow \left\{\chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{1} \right\} \rightarrow \cdots \rightarrow\left\{\chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{N-1} \right\} \rightarrow \chi^{[\gamma_1 \cdots \gamma_r]}_{N} \rightarrow \left\{\chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{N} \right\}. \]

也就是说,给定 \(\gamma_1, \cdots, \gamma_r\),任意粒子 \(N\) 的归一化因子都可以如此迭代计算。因为迭代式非常简单,所以预计是秒出。可以定义矢量

\[\vec{\chi}^{[\gamma_1, \cdots, \gamma_r]}_N \equiv \left( \chi^{[\gamma_1 \cdots \gamma_r]}_{N},\left\{\chi^{[\alpha\gamma_1 \cdots \gamma_r]}_{N} \right\} \right) \]

那么上面的迭代即

\[\vec{\chi}^{[\gamma_1, \cdots, \gamma_r]}_0 = (1,1,\cdots, 1), \\ \vec{\chi}^{[\gamma_1, \cdots, \gamma_r]}_{N-1} \rightarrow \vec{\chi}^{[\gamma_1, \cdots, \gamma_r]}_N. \]

test case: \(\nu_i = 1, i \in \Theta\)

此时 \(\chi_N\) 很容易解析地得到:

\[\chi_N = C^N_\Omega (N!)^2 = \frac{\Omega!N!}{(\Omega-N)!}. \]

2. 矩阵元的计算

通过 many-pair density matrix,可以计算由对算符构造的任意算符矩阵元。

体系哈密顿量为

\[\hat{H} = \sum_{\alpha \beta} \epsilon_{\alpha \beta} \hat{c}^\dagger_\alpha \hat{c}_\beta + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} V_{\alpha\beta\gamma\delta} \hat{c}^\dagger_\alpha \hat{c}^\dagger_\beta \hat{c}_\gamma \hat{c}_\delta, \]

其中 \(V_{\alpha \beta\gamma\delta} = - \langle \alpha \beta | \hat{V} | \gamma \delta \rangle\),有对称性 \(\epsilon_{\alpha\beta} = \epsilon_{\beta \alpha}, V_{\alpha\beta\gamma\delta} = - V_{\beta\alpha\gamma\delta} = V_{\gamma\delta\alpha\beta}\)。贾师兄在这里假定了 \(\epsilon_{\alpha\beta} = \epsilon_{\bar{\beta}\bar{\alpha}}, V_{\alpha\beta\gamma\delta} = V(\bar{\delta}\bar{\gamma}\bar{\beta}\bar{\alpha})\),据说这是假定 time-even 哈密顿量。他还假定 \(\epsilon_{\alpha\beta}\) 和 \(V_{\alpha\beta\gamma\delta}\) 是实数。

2.1 many-pair density matrix

若给定 \(\gamma_1, \cdots, \gamma_r\),要求 block 掉 \(\{ \hat{P}^\dagger_{\gamma_i}\}\) ,然后在这个截断空间里计算 \((\hat{P}^\dagger)^{M-p} \hat{P}^\dagger_{\alpha_1} \cdots \hat{P}^\dagger_{\alpha_p} |0\rangle\) 与 \((\hat{P}^\dagger)^{M-q} \hat{P}^\dagger_{\beta_1} \cdots \hat{P}^\dagger_{\beta_q} |0\rangle\) 的 overlap,

\[t^{[\gamma_1 \gamma_2 \cdots \gamma_r], M}_{\alpha_1, \cdots, \alpha_p; \beta_1, \cdots, \beta_q} \equiv \langle 0 | \hat{P}^{M-p} \hat{P}_{\gamma_1} \cdots \hat{P}_{\gamma_r} \hat{P}_{\alpha_1}\cdots \hat{P}_{\alpha_p} \hat{P}^\dagger_{\beta_1} \cdots \hat{P}^\dagger_{\beta_q} (\hat{P}^\dagger)^{M-q} |0\rangle, \]

这里我们约定 \(\{\alpha_i\}, \{\beta_j\}\)没有共同元素,否则可以移到 \(\{\gamma_i\}\)里面去。这样的话,这么写也可以

\[t^{[\gamma_1 \gamma_2 \cdots \gamma_r], M}_{\alpha_1, \cdots, \alpha_p; \beta_1, \cdots, \beta_q} = \langle 0 | \hat{P}^{M-p} \hat{P}_{\gamma_1} \cdots \hat{P}_{\gamma_r} \hat{P}^\dagger_{\beta_1} \cdots \hat{P}^\dagger_{\beta_q} \hat{P}_{\alpha_1}\cdots \hat{P}_{\alpha_p} (\hat{P}^\dagger)^{M-q} | 0 \rangle, \]

所以可以叫做 many-pair density matrix。容易看出,它可以表示成 \(\chi\) 的表达式:

\[t^{[\gamma_1, \cdots, \gamma_r],M}_{\alpha_1, \cdots, \alpha_p; \beta_1, \cdots, \beta_q} = \nu_{\alpha_1} \cdots \nu_{\alpha_p} \nu_{\beta_1} \cdots \nu_{\beta_q} \frac{(M-p)!(M-q)!}{(M-p-q)!(M-p-q)!} \chi^{[\alpha_1 \cdots \alpha_p \beta_1 \cdots \beta_q \gamma_1 \cdots \gamma_r]}_{M-p-q}. \]

2.2 单体算符矩阵元

这个比较简单,

\[\langle 0 | \hat{P}^N \hat{c}^\dagger_\alpha \hat{c}_\beta (\hat{P}^\dagger)^N | 0 \rangle = \delta_{\alpha\beta} \chi_N \langle \phi_N | \hat{n}_\alpha | \phi_N \rangle = (N\nu_\alpha)^2 \chi^{[\alpha]}_{N-1}. \]

2.3 两体算符矩阵元

只有以下 3 种情况,两体矩阵元不为零:

\[\langle 0 | \hat{P}^N \hat{c}^\dagger_\alpha \hat{c}^\dagger_\bar{\alpha} \hat{c}_\bar{\alpha} \hat{c}_\alpha (\hat{P}^\dagger)^N |0\rangle = (N\nu_\alpha)^2 \chi^{[\alpha]}_{N-1}, \\ \langle 0 | \hat{P}^N \hat{c}^\dagger_\alpha \hat{c}^\dagger_\bar{\alpha} \hat{c}_\bar{\beta} \hat{c}_\beta (\hat{P}^\dagger)^N | 0 \rangle = N^2 \nu_\alpha \nu_\beta \chi^{[\alpha\beta]}_{N-1}, \\ \langle 0 | \hat{P}^N \hat{c}^\dagger_\alpha \hat{c}^\dagger_\beta \hat{c}_\beta \hat{c}_\alpha (\hat{P}^\dagger)^N | 0 \rangle = N^2(N-1)^2 \nu^2_\alpha \nu^2_\beta \chi^{[\alpha\beta]}_{N-2}. \]

2.4 同类核子哈密顿量期望值

哈密顿量定义为

\[\hat{H} = \sum_{\alpha\beta} \epsilon_{\alpha\beta} \hat{c}^\dagger_\alpha \hat{c}_\beta + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} V_{\alpha\beta\gamma\delta} \hat{c}^\dagger_\alpha \hat{c}^\dagger_\beta \hat{c}_\delta \hat{c}_\gamma. \]

\[\langle \phi_N | \hat{H} | \phi_N \rangle = \sum_{\alpha \in \Theta} 2 \epsilon_{\alpha \alpha} \langle \phi_N | \hat{c}^\dagger_\alpha \hat{c}_\alpha | \phi_N \rangle + \sum_{\alpha \in \Theta } V_{\alpha \bar{\alpha} \alpha \bar{\alpha} } \langle \phi_N | \hat{c}^\dagger_\alpha \hat{c}^\dagger_\bar{\alpha} \hat{c}_\bar{\alpha} \hat{c}_\alpha | \phi_N \rangle \\ + \sum^{\alpha \neq \beta}_{\alpha, \beta \in \Theta} V_{\alpha \bar{\alpha} \beta \bar{\beta} } \langle \phi_N | \hat{c}^\dagger_\alpha \hat{c}^\dagger_\bar{\alpha} \hat{c}_\bar{\beta} \hat{c}_\beta | \phi_N \rangle + \sum^{\alpha \neq \beta}_{\alpha, \beta \in \Theta} (2V_{\alpha \beta \alpha \beta } + 2V_{\alpha \bar{\beta} \alpha \bar{\beta} } ) \langle \phi_N |\hat{c}^\dagger_\alpha \hat{c}^\dagger_\beta \hat{c}_\beta \hat{c}_\alpha | \phi_N \rangle. \]

将上一小节的结果代入上式,若记 \(G_{\alpha\beta} = V_{\alpha\bar{\alpha}\beta\bar{\beta}}, \Lambda_{\alpha\beta} = V_{\alpha\beta\alpha\beta} + V_{\alpha \bar{\beta} \alpha \bar{\beta} }\),得到

\[\bar{E} \equiv \langle \phi_N | \hat{H} | \phi_N \rangle = \frac{N^2}{\chi_N} \left( \sum_{\alpha \in \Theta} (2\epsilon_{\alpha\alpha} + G_{\alpha\alpha}) \nu^2_\alpha \chi^{[\alpha]}_{N-1} + \sum^{\alpha < \beta}_{\alpha, \beta \in \Theta} 2G_{\alpha \beta} \nu_\alpha \nu_\beta \chi^{[\alpha\beta]}_{N-1} + (N-1)^2 \sum^{\alpha < \beta}_{\alpha, \beta \in \Theta} 2 \Lambda_{\alpha\beta} \nu^2_\alpha \nu^2_\beta \chi^{[\alpha\beta]}_{N-2} \right). \]

这个与贾力源的公式一致,只是我的后两个求和符号上有 \(\alpha < \beta\),导致相应的有个 2 倍。最后一项有点 tricky,本就只需考虑 \(\sum^{\alpha<\beta}_{\alpha,\beta \in \Theta}\) 的情况,\(V_{\alpha\beta\beta\alpha}, V_{\alpha \bar{\beta} \alpha \bar{\beta} }, V_{\bar{\alpha} \bar{\beta} \bar{\alpha} \bar{\beta} }, V_{\bar{\alpha} \beta \bar{\alpha} \beta }\),这四项+时间反演对称,得到 \(2\Lambda_{\alpha\beta}\)。

感觉可以设置 \(\nu_i = 1\),来做简单测试。

2.5 同类核子哈密顿量期望值的偏导数

先算 overlap:

\[\delta \chi_N = 2N \langle 0 | \hat{P}^N \hat{P}^\dagger_\alpha (\hat{P}^\dagger)^{N-1} |0\rangle \delta \nu_\alpha = 2 N^2 \nu_{\alpha}\chi^{[\alpha]}_{N-1} \delta \nu_\alpha = \frac{ 2\chi_N}{ \nu_\alpha} \langle \phi_N | \hat{n}_\alpha |\phi_N\rangle\delta \nu_\alpha. \]

这可以推广: $ \alpha \notin { \gamma_1, \cdots , \gamma_r }$ 时,

\[\delta \chi^{[\gamma_1 \cdots \gamma_r]}_N = 2 N^2 \nu_{\alpha}\chi^{[\alpha \gamma_1 \cdots \gamma_r]}_{N-1} \delta \nu_\alpha. \]

Anyway, \(\chi_N\) 的偏导数有了

\[\frac{ \partial }{\partial \nu_\alpha} \chi_N = 2 N^2 \nu_{\alpha}\chi^{[\alpha]}_{N-1}. \]

考虑哈密顿量矩阵元的偏导数,

\[\delta \langle \hat{P}^N | \hat{H} |(\hat{P}^\dagger)^N \rangle = 2N \langle \hat{P}^{N-1} \hat{P}_\alpha | \hat{H} | (\hat{P}^\dagger)^N \rangle \delta \nu_\alpha, \]

下面计算 \(\langle \hat{P}^{N-1} \hat{P}_\alpha | \hat{H} |(\hat{P}^\dagger)^N \rangle\) ,可以如下从容计算。

  • 先考虑 \(\hat{H}\) 中不含 \(\alpha\) 的项的贡献,得到

\[N \nu_\alpha \langle (\hat{P} - \nu_\alpha \hat{P}_\alpha)^{N-1} | \hat{H} | (\hat{P}^\dagger - \nu_\alpha \hat{P}^\dagger_\alpha)^{N-1} \rangle = N \nu_\alpha \langle \phi^{[\alpha]}_{N-1} | \hat{H} | \phi^{[\alpha]}_{N-1} \rangle \chi^{[\alpha]}_{N-1}. \]

  • 再分别考虑 \(\hat{H}\) 中包含 \(\alpha\) 的各项贡献。

    • 源于 \(\hat{c}^\dagger_\alpha \hat{c}_\alpha, \hat{c}^\dagger_\bar{\alpha} \hat{c}_\bar{\alpha}, \hat{P}^\dagger_\alpha \hat{P}_\alpha\)形式的相互作用,与\(2\epsilon_{\alpha \alpha} + G_{\alpha \alpha}\) 相关的贡献(对单粒子能)为

      \[(2\epsilon_{\alpha \alpha} + G_{\alpha\alpha}) N \nu_\alpha \chi^{[\alpha]}_{N-1}; \]

    • 源于 \(\hat{P}^\dagger_\alpha \hat{P}_\beta\) 形式的相互作用,与 \(G_{\alpha \beta}\) 有关的贡献(对散射?)为

      \[\sum_{\beta \neq \alpha} N \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1}; \]

    • 源于 \(\hat{c}^\dagger_\alpha \hat{c}_\alpha \hat{c}^\dagger_\beta \hat{c}_\beta\) 形式的相互作用,与 \(\Lambda_{\alpha\beta}\)有关的贡献为

      \[\sum_{\beta \neq \alpha} 2 N(N-1)^2 \nu_\alpha \nu^2_\beta \chi^{[\alpha\beta]}_{N-2} \Lambda_{\alpha\beta}, \]

    ​ 这里有个 2 倍,因为相互作用可以是 \(\hat{c}^\dagger_\alpha \hat{c}_\alpha \hat{c}^\dagger_\beta \hat{c}_\beta\),也可以是 \(\hat{c}^\dagger_\beta \hat{c}_\beta \hat{c}^\dagger_\alpha \hat{c}_\alpha\)。

所以最终得到,

\[\langle \hat{P}^{N-1} \hat{P}_\alpha | \hat{H} |(\hat{P}^\dagger)^N \rangle = N \nu_\alpha \langle \phi^{[\alpha]}_{N-1} | \hat{H} | \phi^{[\alpha]}_{N-1} \rangle \chi^{[\alpha]}_{N-1} + (2\epsilon_{\alpha \alpha} + G_{\alpha\alpha}) N \nu_\alpha \chi^{[\alpha]}_{N-1} \\ + \sum_{\beta \neq \alpha} N \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1} + \sum_{\beta \neq \alpha} 2 N(N-1)^2 \nu_\alpha \nu^2_\beta \chi^{[\alpha\beta]}_{N-2} \Lambda_{\alpha\beta}, \]

所以得到了能量偏导数

\[ \frac{\partial}{\partial \nu_\alpha} \bar{E} = - \frac{1}{\chi^2_N} 2N^2 \nu_\alpha \chi^{[\alpha]}_{N-1} \langle \hat{P}^N| \hat{H} |(\hat{P}^\dagger)^N \rangle \\ + \frac{2N^2}{\chi_N} \left\{ \nu_\alpha \langle \phi^{[\alpha]}_{N-1}| \hat{H} | \phi^{[\alpha]}_{N-1} \rangle \chi^{[\alpha]}_{N-1} + (2\epsilon_{\alpha \alpha} + G_{\alpha\alpha}) \nu_\alpha \chi^{[\alpha]}_{N-1} + \sum_{\beta \neq \alpha} \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1} + \sum_{\beta \neq \alpha} 2 (N-1)^2 \nu_\alpha\nu^2_\beta \chi^{[\alpha\beta]}_{N-2} \Lambda_{\alpha\beta} \right\} \\ = \frac{2N^2}{\chi_N} \left\{ - \nu_\alpha \chi^{[\alpha]}_{N-1} \bar{E} + \nu_\alpha \langle \phi^{[\alpha]}_{N-1}| \hat{H} | \phi^{[\alpha]}_{N-1}\rangle \chi^{[\alpha]}_{N-1} + (2\epsilon_{\alpha \alpha} + G_{\alpha\alpha}) \nu_\alpha \chi^{[\alpha]}_{N-1} + \sum_{\beta \neq \alpha} \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1} + \sum_{\beta \neq \alpha} 2 (N-1)^2 \nu_\alpha \nu^2_\beta \chi^{[\alpha\beta]}_{N-2} \Lambda_{\alpha\beta} \right\} \\ = \frac{2N^2}{\chi_N} \left\{ \nu_\alpha \chi^{[\alpha]}_{N-1} [ - \bar{E} + \langle \phi^{[\alpha]}_{N-1} | \hat{H} | \phi^{[\alpha]}_{N-1} \rangle + 2\epsilon_{\alpha \alpha} + G_{\alpha\alpha} ] + \sum_{\beta \neq \alpha} \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1} + \sum_{\beta \neq \alpha} 2 (N-1)^2 \nu_\alpha \nu^2_\beta \chi^{[\alpha\beta]}_{N-2} \Lambda_{\alpha\beta} \right\} \]

有了 \(\bar{E}\) 和 \(\frac{\partial}{\partial \nu_\alpha} \bar{E}\) 以后,就可以做变分了,改变 \(\nu_\alpha\),指导 \(\bar{E}\) 取得极小值。

为了使得这个式子看起来紧凑一点,贾师兄[1]约定:

\[d_\alpha = 2 \epsilon_{\alpha\alpha} + G_{\alpha\alpha} + 2(N-1)^2 \sum^{\beta \neq \alpha}_{\beta} \Lambda_{\alpha\beta} \nu^2_\beta \frac{ \chi^{[\alpha\beta]}_{N-2}}{\chi^{[\alpha]}_{N-1}}, \]

那么就有

\[\nu_\alpha = \frac{ - \sum_{\beta \neq \alpha} \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1} }{ \chi^{[\alpha]}_{N-1} [ d_\alpha + \langle \phi^{[\alpha]}_{N-1} | \hat{H} | \phi^{[\alpha]}_{N-1} \rangle - \bar{E} ] }. \]

然后可以整个迭代式,即 \(\partial \bar{E} / \partial \nu_\alpha = 0\),得到

\[\nu_\alpha = \frac{ - \sum_{\beta \neq \alpha} \nu_\beta G_{\alpha\beta} \chi^{[\alpha\beta]}_{N-1} }{ \chi^{[\alpha]}_{N-1} [ d_\alpha + \langle \phi^{[\alpha]}_{N-1} | \hat{H} | \phi^{[\alpha]}_{N-1} \rangle - \bar{E} ] }. \]

2.6 质子-中子相互作用

上面的公式都是关乎同类核子的,如果哈密顿量中存在质子-中子相互作用,即

\[\hat{H}_{\pi\nu} = \sum_{\alpha_\pi \beta_\nu \gamma_\pi \delta_\nu} V_{\alpha_\pi \beta_\nu \gamma_\pi \delta_\nu} \hat{c}^\dagger_{\alpha_\pi} \hat{c}^\dagger_{\beta_\nu} \hat{c}_{\delta_\nu} \hat{c}_{\gamma_\pi}, \]

对于波函数

\[|\Phi\rangle = | \phi_{n_\pi} \rangle |\phi_{n_\nu} \rangle, \]

\[\langle \Phi | \hat{H}_{\pi \nu} |\Phi\rangle = \frac{1}{\chi_{n_\pi} \chi_{n_\nu}} \sum_{\alpha_\pi \beta_\nu } (n_\pi \nu_\alpha)^2 (n_\nu \nu_\beta)^2 \chi^{[\alpha]}_{n_\pi -1} \chi^{[\beta]}_{n_\nu -1 } (V_{\alpha_\pi \beta_\nu \alpha_\pi \beta_\nu} + V_{\alpha_\pi \bar{\beta}_\nu \alpha_\pi \bar{\beta}_\nu} + V_{\bar{\alpha}_\pi \beta_\nu \bar{\alpha}_\pi \beta_\nu} + V_{\bar{\alpha}_\pi \bar{\beta}_\nu \bar{\alpha}_\pi \bar{\beta}_\nu} ) \\ = \frac{1}{\chi_{n_\pi} \chi_{n_\nu}} \sum_{\alpha_\pi \beta_\nu } (n_\pi \nu_\alpha)^2 (n_\nu \nu_\beta)^2 \chi^{[\alpha]}_{n_\pi -1} \chi^{[\beta]}_{n_\nu -1 } 2(V_{\alpha_\pi \beta_\nu \alpha_\pi \beta_\nu} + V_{\alpha_\pi \bar{\beta}_\nu \alpha_\pi \bar{\beta}_\nu} ), \]

第二个等号利用了 \(V\) 的时间反演对称性,即 \(V_{\alpha\beta\gamma\delta} = V_{\bar{\gamma}\bar{\delta} \bar{\beta} \bar{\alpha}}\)。

稍微写紧凑点,记 \(\Lambda_{\alpha_\pi \beta_\nu} = 2(V_{\alpha_\pi \beta_\nu \alpha_\pi \beta_\nu} + V_{\alpha_\pi \bar{\beta}_\nu \alpha_\pi \bar{\beta}_\nu})\),利用 \((n_\pi \nu_\alpha)^2 \chi^{[\alpha]}_{n_\pi -1} = \chi_{n_\pi} - \chi^{[\alpha]}_{n_\pi}\),得到[2],

\[\langle \Phi | \hat{H}_{\pi \nu} |\Phi\rangle = \sum_{\alpha_\pi \beta_\nu } 2 \Lambda_{\alpha_\pi \beta_\nu} (1 - \frac{\chi^{[\alpha]}_{n_\pi}}{\chi_{n_\pi}}) (1 - \frac{\chi^{[\alpha]}_{n_\nu}}{\chi_{n_\nu}}). \]

这个形式确实好看。

2.7 \(\langle\Phi | \hat{H}_{\pi \nu} | \Phi \rangle\)的偏导数

\[\langle \hat{P}^{n_\pi-1} \hat{P}_\alpha; \phi_{n_\nu} | \hat{H}_{\pi\nu} | \hat{P}^{n_\pi}; \phi_{n_\nu} \rangle = \frac{1}{ \chi_{n_\nu}} \sum_{ \beta_\nu } n_\pi \nu_{\alpha_\pi} \chi^{[\alpha_\pi]}_{n_\pi -1} (n_\nu \nu_{\beta_\nu})^2 \chi^{[\beta_\nu]}_{n_\nu -1 } 2\Lambda_{\alpha_\pi \beta_\nu} \\ + \frac{1}{ \chi_{n_\nu}} \sum^{\gamma_\pi \neq \alpha_\pi}_{ \gamma_\pi \beta_\nu } n_\pi \nu_{\alpha_\pi}(n_\pi-1)^2 \nu^2_{\gamma_\pi} \chi^{[\alpha_\pi \gamma_\pi]}_{n_\pi -2} (n_\nu \nu_\beta)^2 \chi^{[\beta]}_{n_\nu -1 } 2 \Lambda_{\gamma_\pi \beta_\nu} ). \]

其中 \(\Lambda_{\alpha_\pi \beta_\nu} = V_{\alpha_\pi \beta_\nu \alpha_\pi \beta_\nu} + V_{\alpha_\pi \bar{\beta}_\nu \alpha_\pi \bar{\beta}_\nu}\),所以有

\[\frac{\partial}{\partial \nu_\alpha} \langle \Phi | \hat{H}_{\pi \nu} | \Phi \rangle = \frac{1}{ \chi_{n_\pi} \chi_{n_\nu}} \sum_{ \beta_\nu } 2 n^2_\pi \nu_{\alpha_\pi} \chi^{[\alpha_\pi]}_{n_\pi -1} (n_\nu \nu_{\beta_\nu})^2 \chi^{[\beta_\nu]}_{n_\nu -1 } 2\Lambda_{\alpha_\pi \beta_\nu} \\ + \frac{1}{ \chi_{n_\pi} \chi_{n_\nu}} \sum^{\gamma_\pi \neq \alpha_\pi}_{ \gamma_\pi \beta_\nu } 2n^2_\pi \nu_{\alpha_\pi}(n_\pi-1)^2 \nu^2_{\gamma_\pi} \chi^{[\alpha_\pi \gamma_\pi]}_{n_\pi -2} (n_\nu \nu_\beta)^2 \chi^{[\beta]}_{n_\nu -1 } 2 \Lambda_{\gamma_\pi \beta_\nu} \\ - \frac{2 n^2_\pi \nu_{\alpha_\pi} \chi^{[\alpha_\pi]}_{n_\pi-1}}{\chi_{n_\pi}} \langle \Phi | \hat{H}_{\pi\nu} | \Phi \rangle. \]

用 (37) 式,以及 \(\frac{ \partial }{\partial \nu_\alpha} \chi_N = 2 N^2 \nu_{\alpha}\chi^{[\alpha]}_{N-1}\), \(\frac{ \partial }{\partial \nu_\alpha} \chi^{[\gamma]}_N = 2 N^2 \nu_{\alpha}\chi^{[\alpha\gamma]}_{N-1}\),得到

\[\partial E_{\pi\nu} / \partial \nu_{\alpha_\pi} = \frac{2n^2_\pi \nu_\alpha}{\chi^2_{n_\pi}} \sum_{\gamma_\pi \beta_\nu} 2 \Lambda_{\gamma_\pi \beta_\nu} ( \chi^{[\gamma]}_{n_\pi} \chi^{[\alpha]}_{n_\pi -1} - \chi_{n_\pi} \chi^{[\alpha\gamma]}_{n_\pi -1})( 1- \frac{ \chi^{[\beta]}_{n_\nu}}{\chi_{n_\nu}}), \]

\(\partial E_{\pi\nu} / \partial \nu_{\beta_\nu}\)也可以类似地写出。因此,整个体系的能量 \(E = E_\pi + E_\nu + E_{\pi\nu}\) 的偏导数可以写出

\[\frac{\partial E}{\partial \nu_{\alpha_\pi} } = \frac{\partial E_\pi}{\partial \nu_{\alpha_\pi}} + \frac{ \partial E_{\pi\nu}}{\partial \nu_{\alpha_\pi}} \\ = \frac{ 2n^2_\pi }{ \chi_{n_\pi} } \left\{ \nu_{\alpha_\pi} \chi^{[\alpha_\pi]}_{n_\pi-1} [ d_{\alpha_\pi} + \langle \phi^{[\alpha_\pi]}_{n_\pi-1} | \hat{H}_\pi | \phi^{[\alpha_\pi]}_{n_\pi - 1}\rangle - \bar{E}_\pi ] + \sum_{\beta_\pi \neq \alpha_\pi} \nu_{\beta_\pi} G_{\alpha_\pi \beta_\pi} \chi^{[\alpha_\pi \beta_\pi ]}_{n_\pi - 1} + \sum_{\gamma_\pi \beta_\nu} 2 \Lambda_{\gamma_\pi \beta_\nu} \frac{ \chi^{[\gamma_\pi]}_{n_\pi} \chi^{[\alpha_\pi]}_{n_\pi -1} - \chi_{n_\pi} \chi^{[\alpha_\pi \gamma_\pi]}_{n_\pi -1}}{\chi_{n_\pi}}( 1- \frac{ \chi^{[\beta_\nu]}_{n_\nu}}{\chi_{n_\nu}}) \right\} \]

把这个式子做 \(\pi \leftrightarrow \nu\) 替换,就得到 \(\partial E / \partial \nu_{\beta_\nu}\) 的值。

如果整一个迭代式,即 \(\partial E / \partial \nu_{\alpha_\pi} = 0\),得到

\[\nu_{\alpha_\pi} = \frac{ - \sum_{\beta_\pi \neq \alpha_\pi} \nu_{\beta_\pi} G_{\alpha_\pi \beta_\pi} \chi^{[\alpha_\pi \beta_\pi]}_{n_\pi - 1} }{ \chi^{[\alpha_\pi]}_{n_\pi - 1} [ d_{\alpha_\pi} + \langle \phi^{[\alpha_\pi]}_{n_\pi - 1} | \hat{H}_\pi | \phi^{[\alpha_\pi]}_{n_\pi - 1} \rangle - \bar{E}_\pi ] + \sum_{\gamma_\pi \beta_\nu} 2 \Lambda_{\gamma_\pi \beta_\nu} \frac{ \chi^{[\gamma_\pi]}_{n_\pi} \chi^{[\alpha_\pi]}_{n_\pi -1} - \chi_{n_\pi} \chi^{[\alpha_\pi \gamma_\pi]}_{n_\pi -1}}{\chi_{n_\pi}}( 1- \frac{ \chi^{[\beta_\nu]}_{n_\nu}}{\chi_{n_\nu}}) }. \]

这样就可以写开壳核的梯度下降,来做变分了。

标签:chi,General,beta,alpha,Seniority,pi,hat,nu,BCS
来源: https://www.cnblogs.com/luyi07/p/16383019.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有