ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Andrew Ng Machine Learning Notes

2022-06-15 23:36:13  阅读:240  来源: 互联网

标签:frac features Notes Andrew Machine bmatrix theta th partial


Source: Coursera Machine Learning provided by Stanford University Andrew Ng - Machine Learning | Coursera


Introduction

definition: 

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Tom Mitchell

classification:    supervised learning & unsupervised learning

                       supervised learning: regression & classification

                       unsupervised learning: clustering & non-clustering (e.g. the "Cocktail Party Algorithm")


Supervised Learning - Linear Regression

notations: 

$x^{(i)}$ : the fearture(s) / input variable(s) of the i-th training example   $x_{j}^{(i)}$ : the j-th feature of the i-th training example

$y^{(i)}$ : the output / target variable of the i-th training example

$X$ : the space of features

$Y$ : the space of output variables

$m$ : the number of training examples $abbr.$ # training examples

$n$ : the number of  features

$\theta$ : the parameters of the hypothesis              $\theta_{j}$ : the j-th parameter corresponding to the j-th feature

hypothesis $h_{\theta}(x)$ : 

$$ h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + ... + \theta_{n}x_{n} = \sum_{j=0}^{n} \theta_{j}x_{j} $$

where $x_{0} = 1$ is an added feature for vectorization.

cost function $J(\theta)$ : 

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

This is also called the "squared error function" / "mean squared error". The halved mean ($\frac{1}{2}$) is for the convenience of the computation of gradient descent.

The goal of the algorithm should be to find $\theta$'s, so that $J(\theta)$ is minimized.

gradient descent: 

start with: $\theta = 0$ (or other values)

repeat until convergence: $\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$

where $\alpha$ is the learning rate. Larger $\alpha$ results in bigger steps and vice versa. Adjust the value according to:

  • If $\alpha$ is too small, it takes too many iterations to converge.

  • If $\alpha$ is too large, it may fail to converge (wave) or even diverge.

Computing $\frac{\partial}{\partial \theta_{j}} J(\theta)$ for linear regression:

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} $$

$$= \frac{1}{2m} \frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{m} (\theta_{j}x_{j}^{(i)} + \sum_{k=0,k\neq j}^{n}\theta_{k}x_{k}^{(i)} - y^{(i)})^{2}$$

$$= \frac{1}{2m}  2 \sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_{j}^{(i)}$$

thus, 

$\theta_{j} = \theta_{j} - \alpha \frac{1}{m}  \sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_{j}^{(i)}$

In each iteration, $\theta$'s should be simultaneously updated.

With different starting points, gradient descent may end up at different local extrema. In linear regression problems, the cost function $J(\theta)$ is always a convex function. So gradient descent will correctly find the only global extrema.

Specifically, the above algorithm is called batch gradient descent where each step uses all the training examples.

feature scaling and mean normalization: 

$\theta$ will descend quickly on small ranges and slowly on large ranges, and so will oscillate inefficiently down to the optimum when the variables are very uneven. So we modify the ranges of different features so that they are all roughly the same by applying: 

$$x_{j}^{(i)} = \frac{x_{j}^{(i)} - \mu_{j}}{s_{j}}$$

where $\mu_{j}$ is the mean of the j-th feature, $s_{j}$ is the range or standard deviation of the j-th feature.

polynomial regression: The above algorithm can be applied to solve for situations where the hypothesis $h_{\theta}(x)$ is a polynomial. Just make the terms with other degrees new features.

vectorization for implementation:

Index ranges from 1 to $n+1$ as-is in Matlab.

$ X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ ... \\ x^{(m)} \\ \end{bmatrix} = \begin{bmatrix} x_{1}^{(1)} & x_{2}^{(1)} & ... & x_{n+1}^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} & ... & x_{n+1}^{(2)} \\ . & . & . & . \\ x_{1}^{(m)} & x_{2}^{(m)} & ... & x_{n+1}^{(m)} \\ \end{bmatrix} $                                $y = \begin{bmatrix} y^{1} \\ y^{2} \\ ... \\ y^{m} \\ \end{bmatrix}$                                $\theta = \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ ... \\ \theta_{n+1} \\ \end{bmatrix}$

$$ h_{\theta}(X) = \begin{bmatrix} h_{\theta}(x^{(1)}) \\ h_{\theta}(x^{(2)}) \\ ... \\ h_{\theta}(x^{(m)})\\ \end{bmatrix} = X \theta $$

thus, J = sum( (X * theta - y) .^ 2 ) / (2 * m);

$$ \theta = \theta - \alpha \frac{1}{m} X^{T}(X\theta - Y) X$$

i.e. theta = theta - alpha / m * X' * (X * theta - y);

normal equation: 

$$\theta = (X^{T}X)^{-1}X^{T}y$$

There is no need to do feature scaling or mean normalization for normal equation. 

If $X^{T}X$ is invertible, the common causes might be having:

  • Redundant features, where two features are linearly dependent. Solution: delete features that are linearly dependent with others.

  • Too many features (e.g. m ≤ n). Solution: delete some features.

The complexity of normal equation is $O(n^{3})$ compared to $O(kn^{2})$ of gradient descent. So when $n$ is too large, gradient descent is more efficient.

 

标签:frac,features,Notes,Andrew,Machine,bmatrix,theta,th,partial
来源: https://www.cnblogs.com/ms-qwq/p/16380094.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有