ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

CNN进阶 | 关于Inception Module与 Residual network | MNIST数据集

2022-05-30 13:32:16  阅读:169  来源: 互联网

标签:loss 进阶 nn 300 self Residual Module test size


1. 关于GoogleNet:

image-20210902144838570

2. Inception Module

image-20210902144945817

3. 1*1 Convolution:

image-20210902144750771

为什么使用1*1的卷积:

image-20210902155102551

节省训练时间

4. Inception Module 的实现

image-20210902163542124

image-20210902163805703

image-20210902163943880

代码:

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

# prepare dataset

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 归一化,均值和方差

train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


# design model using class
class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)

        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)

        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)

        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)  # b,c,w,h  c对应的是dim=1


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)  # 88 = 24x3 + 16

        self.incep1 = InceptionA(in_channels=10)  # 与conv1 中的10对应
        self.incep2 = InceptionA(in_channels=20)  # 与conv2 中的20对应

        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)

        return x


model = Net()

# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# training cycle forward, backward, update


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1,   300] loss: 0.931
[1,   600] loss: 0.190
[1,   900] loss: 0.129
accuracy on test set: 97 % 
[2,   300] loss: 0.105
[2,   600] loss: 0.088
[2,   900] loss: 0.083
accuracy on test set: 97 % 
[3,   300] loss: 0.074
[3,   600] loss: 0.074
[3,   900] loss: 0.066
accuracy on test set: 98 % 
[4,   300] loss: 0.063
[4,   600] loss: 0.062
[4,   900] loss: 0.055
accuracy on test set: 98 % 
[5,   300] loss: 0.058
[5,   600] loss: 0.052
[5,   900] loss: 0.052
accuracy on test set: 98 % 
[6,   300] loss: 0.047
[6,   600] loss: 0.051
[6,   900] loss: 0.047
accuracy on test set: 98 % 
[7,   300] loss: 0.044
[7,   600] loss: 0.043
[7,   900] loss: 0.043
accuracy on test set: 98 % 
[8,   300] loss: 0.041
[8,   600] loss: 0.041
[8,   900] loss: 0.039
accuracy on test set: 98 % 
[9,   300] loss: 0.033
[9,   600] loss: 0.039
[9,   900] loss: 0.038
accuracy on test set: 98 % 
[10,   300] loss: 0.033
[10,   600] loss: 0.039
[10,   900] loss: 0.031
accuracy on test set: 98 % 

5. 运行结果:

image-20210902203223700

6. 关于梯度消失:

image-20210902203408839

7. 关于Residual network

image-20210902203452840

image-20210902203656737

8. Residual network的实现

image-20210902203734754

image-20210902203944830

image-20210902204200904

代码:

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
 
# prepare dataset
 
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
 
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 
# design model using class
class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
 
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x + y)
 
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5) # 88 = 24x3 + 16
 
        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)
 
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(512, 10) # 暂时不知道1408咋能自动出来的
 
 
    def forward(self, x):
        in_size = x.size(0)
 
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
 
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x
 
model = Net()
 
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
# training cycle forward, backward, update
 
 
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
 
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100*correct/total))
 
 
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1,   300] loss: 0.543
[1,   600] loss: 0.145
[1,   900] loss: 0.123
accuracy on test set: 97 % 
[2,   300] loss: 0.089
[2,   600] loss: 0.080
[2,   900] loss: 0.067
accuracy on test set: 97 % 
[3,   300] loss: 0.058
[3,   600] loss: 0.057
[3,   900] loss: 0.054
accuracy on test set: 98 % 
[4,   300] loss: 0.045
[4,   600] loss: 0.047
[4,   900] loss: 0.047
accuracy on test set: 98 % 
[5,   300] loss: 0.038
[5,   600] loss: 0.040
[5,   900] loss: 0.038
accuracy on test set: 98 % 
[6,   300] loss: 0.033
[6,   600] loss: 0.036
[6,   900] loss: 0.031
accuracy on test set: 98 % 
[7,   300] loss: 0.027
[7,   600] loss: 0.032
[7,   900] loss: 0.028
accuracy on test set: 98 % 
[8,   300] loss: 0.028
[8,   600] loss: 0.025
[8,   900] loss: 0.027
accuracy on test set: 98 % 
[9,   300] loss: 0.020
[9,   600] loss: 0.025
[9,   900] loss: 0.024
accuracy on test set: 98 % 
[10,   300] loss: 0.021
[10,   600] loss: 0.024
[10,   900] loss: 0.020
accuracy on test set: 99 % 

9. 使用Residual network的效果

image-20210902204235472

标签:loss,进阶,nn,300,self,Residual,Module,test,size
来源: https://www.cnblogs.com/xinyangblog/p/16326438.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有