ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

逻辑回归

2022-04-20 10:32:11  阅读:52  来源: 互联网

标签:loc 逻辑 plt 回归 X2 new X1 data


简介

逻辑回归: 使用了逻辑回归函数对数据进行了拟合就叫逻辑回归??

\[P(x)=\frac{1}{1+e^{-x}}(sigmoid function) \]

\[y= \begin{cases}1, & P(x) \geq 0.5 \\ \hline 0, & P(x)<0.5\end{cases} \]

其中y为分类结果,P为概率分布,x为特征值。

分类问题的核心就是寻找决策边界。

损失函数

\[J_{i}=\left\{\begin{array}{l} -\log \left(P\left(x_{i}\right)\right), \text { if } y_{i}=1 \\ -\log \left(1-P\left(x_{i}\right)\right), \text { if } y_{i}=0 \end{array}\right. \]

联合表示

\[J=\frac{1}{m} \sum_{i=1}^{m} J_{i}=-\frac{1}{m}\left[\sum_{i=1}^{m}\left(\left(y_{i} \log \left(P\left(x_{i}\right)\right)\right.+\left(1-y_{i}\right) \log \left(1-P\left(x_{i}\right)\right)\right)\right] \]

重复计算直至收敛

\[\left\{\begin{aligned} t e m p_{\theta_{j}} &=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \\ \theta_{j} &=t e m p_{\theta_{j}} \end{aligned}\right\} \]

评估模型表现
使用准确率

\[\text { Accuracy }=\frac{\text { 正确预测样本数量 }}{\text { 总样本数量 }} \]

参考链接

https://blog.csdn.net/weixin_46344368/article/details/105904589?spm=1001.2014.3001.5502

code

学生考试成绩已知两门成绩判定第三门成绩是否会合格

import pandas as pd
import numpy as np
data = pd.read_csv('examdata.csv')
data.head()
#visalize the data
from matplotlib import pyplot as plt
fig1=plt.figure()
plt.scatter(data.loc[:,'Exam1'],data.loc[:,'Exam2'])
plt.title('Exam1-Exam2')
plt.xlabel('Exam1')
plt.ylabel('Exam2')
plt.show()
# add label mask
mask=data.loc[:,'Pass']==1
print(mask) # print(~mask)
fig2=plt.figure()
passed=plt.scatter(data.loc[:,'Exam1'][mask],data.loc[:,'Exam2'][mask])
failed=plt.scatter(data.loc[:,'Exam1'][~mask],data.loc[:,'Exam2'][~mask])
plt.title('Exam1-Exam2')
plt.xlabel('Exam1')
plt.ylabel('Exam2')
plt.legend((passed,failed),('passed','failed'))
plt.show()
#define X,y
X = data.drop(['Pass'],axis=1)
y = data.loc[:,'Pass']
#X.head()
X1 = data.loc[:,'Exam1']
X2 = data.loc[:, 'Exam2']
y.head()
# eatablish the model and train it
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression()
LR.fit(X,y)
# show the predicted result and its accuracy
y_predict = LR.predict(X)
print(y_predict)
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y,y_predict)
print(accuracy)
#exam1 = 70, exam2=65
y_test = LR.predict([[70,65]])
print('passed' if y_test==1 else 'failed')
print(LR.coef_,LR.intercept_)
theta0 = LR.intercept_
theta1,theta2 = LR.coef_[0][0],LR.coef_[0][1]
print(theta0,theta1,theta2)
X2_new = -(theta0+theta1*X1)/theta2
print(X2_new)
# 边界函数
fig3 = plt.figure()
passed=plt.scatter(data.loc[:,'Exam1'][mask],data.loc[:,'Exam2'][mask])
failed=plt.scatter(data.loc[:,'Exam1'][~mask],data.loc[:,'Exam2'][~mask])
plt.plot(X1,X2_new) #画出决策边界
plt.title('Exam1-Exam2')
plt.xlabel('Exam1')
plt.ylabel('Exam2')
plt.legend((passed,failed),('passed','failed'))
plt.show()  
# create new data
X1_2 = X1*X1
X2_2 = X2*X2
X1_X2 = X1*X2
print(X1,X1_2)
X_new = {'X1':X1,'X2':X2,'X1_2':X1_2,'X2_2':X2_2,'X1_X2':X1_X2}
X_new = pd.DataFrame(X_new)
print(X_new)
LR2 = LogisticRegression()
LR2.fit(X_new,y)
y2_predict = LR2.predict(X_new)
accuracy2 = accuracy_score(y,y2_predict)
print(accuracy2)
X1_new = X1.sort_values()
print(X1,X1_new)
theta0=LR2.intercept_
theta1,theta2,theta3,theta4,theta5=LR2.coef_[0][0],LR2.coef_[0][1],LR2.coef_[0][2],LR2.coef_[0][3],LR2.coef_[0][4]
a = theta4
b = theta5*X1_new+theta2
c = theta0+theta1*X1_new+theta3*X1_new*X1_new
X2_new_boundary = (-b+np.sqrt(b*b-4*a*c))/(2*a)
print(X2_new_boundary)
fig5 = plt.figure()
passed=plt.scatter(data.loc[:,'Exam1'][mask],data.loc[:,'Exam2'][mask])
failed=plt.scatter(data.loc[:,'Exam1'][~mask],data.loc[:,'Exam2'][~mask])
plt.plot(X1_new,X2_new_boundary) #画出决策边界
plt.title('Exam1-Exam2')
plt.xlabel('Exam1')
plt.ylabel('Exam2')
plt.legend((passed,failed),('passed','failed'))
plt.show()

标签:loc,逻辑,plt,回归,X2,new,X1,data
来源: https://www.cnblogs.com/eat-too-much/p/16168749.html

专注分享技术,共同学习,共同进步。侵权联系[admin#icode9.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有