ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Microprocessor chronology(微处理器年代表)

2022-04-12 01:03:01  阅读:477  来源: 互联网

标签:nm 16 微处理器 32 GHz chronology MHz Microprocessor Intel


今天看到一则消息是,台湾的台积电,100位工程师集体跳槽到中国泉芯集成电路制造和武汉弘芯半导体,未来是芯片的时代.

Microprocessor 年代表

1970s(十九世纪七十年代)

The first microprocessors were designed and manufactured in the 1970s. 
第一个微处理器被设计和生产是在二十世纪七十年代.

Designers predominantly used MOSFET transistors with pMOS logic in the early 1970s,

20世纪70年代早期,设计师主要使用带有pMOS逻辑的MOSFET晶体管

and then predominantly used NMOS logic from the mid-1970s.

然后主要使用20世纪70年代中期的NMOS逻辑。

They also experimented with various word lengths. Early on, 4-bit processors were common (e.g. Intel 4004).

他们还试验了不同的字长。早期,4位处理器很常见(例如英特尔4004)。

Later in the decade, 8-bit processors such as the MOS 6502 superseded the 4-bit chips. 

在这十年(1970-1980)的后期,8位处理器(如MOS 6502芯片)取代了4位芯片.
注:MOS 6502是1975年由MOS科技所研制的8位微处理器(CPU),说明4位的cpu已过时

16-bit processors emerged by the decade's end. Some unusual word lengths were tried, including 12-bit and 20-bit.
16位处理器在本世纪末出现。尝试了一些不寻常的字长,包括12位和20位。

英特尔4004被广泛认为是世界第一款商用微处理器

DateNameDeveloperdata-sort-type="number" Max clock
(first version)
data-sort-type="number" Word size
(bits)
data-sort-type="number" Process data-sort-type="number" Chips[1] data-sort-type="number" Transistors MOSFET 
1971 4004 Intel 740 kHz 4 10 μm 1 2,250 pMOS  
1972 PPS-25 Fairchild 400 kHz 4   2   pMOS  
1972 μPD700 NEC   4   1     [2]
1972 8008 Intel 500 kHz 8 10 μm 1 3,500 pMOS  
1972 PPS-4 Rockwell 200 kHz 4   1   pMOS [3]
1973 μCOM-4 NEC 2 MHz 4 7.5 μm 1 2,500 NMOS [4] [5]
1973 TLCS-12 Toshiba 1 MHz 12 6 μm 1 2,800 silicon gates pMOS [6]
1973 Mini-D Burroughs 1 MHz 8   1   pMOS  
1974 IMP-8 National 715 kHz 8   3   pMOS  
1974 8080 Intel 2 MHz 8 6 μm 1 6,000 NMOS  
1974 μCOM-8 NEC 2 MHz 8   1   NMOS  
1974 5065 Mostek 1.4 MHz 8   1   pMOS  
1974 μCOM-16 NEC 2 MHz 16   2   NMOS  
1974 IMP-4 National 500 kHz 4   3   pMOS  
1974 4040 Intel 740 kHz 4 10 μm 1 3,000 pMOS  
1974 6800 Motorola 1 MHz 8 - 1 4,100 NMOS  
1974 TMS 1000 Texas Instruments 400 kHz 4 8 μm 1 8,000    
1974 PACE National   16   1   pMOS [7]
1974 ISP-8A/500 (SC/MP) National 1 MHz 8   1   pMOS  
1975 6100 Intersil 4 MHz 12 - 1 4,000 CMOS [8] [9]
1975 TLCS-12A Toshiba 1.2 MHz 12 - 1   pMOS  
1975 2650 Signetics 1.2 MHz 8   1   NMOS  
1975 PPS-8 Rockwell 256 kHz 8   1   pMOS  
1975 F-8 Fairchild 2 MHz 8   1   NMOS  
1975 CDP 1801 RCA 2 MHz 8 5 μm 2 5,000 CMOS [10] [11]
1975 6502 MOS Technology 1 MHz 8 - 1 3,510 NMOS (dynamic)  
1975 IMP-16 National 715 kHz 16   5   pMOS [12]
1975 PFL-16A (MN 1610) Panafacom 2 MHz 16 - 1   NMOS  
1975 BPC Hewlett Packard 10 MHz 16 - 1 6,000 (+ ROM) NMOS [13] [14]
1975 MCP-1600 Western Digital 3.3 MHz 16 - 3   NMOS  
1975 CP1600 General Instrument 3.3 MHz 16   1   NMOS [15] [16] [17]
1976 CDP 1802 RCA 6.4 MHz 8   1   CMOS [18] [19]
1976 Z-80 Zilog 2.5 MHz 8 4 μm 1 8,500 NMOS  
1976 TMS9900 Texas Instruments 3.3 MHz 16 - 1 8,000    
1976 8x300 Signetics 8 MHz 8   1   Bipolar [20] [21]
1977 Bellmac-8 (WE212) Bell Labs 2.0 MHz 8 5 μm 1 7,000 CMOS  
1977 8085 Intel 3.0 MHz 8 3 μm 1 6,500    
1977 MC14500B Motorola 1.0 MHz 1   1   CMOS  
1978 6809 Motorola 1 MHz 8 5 μm 1 9,000    
1978 8086 Intel 5 MHz 16 3 μm 1 29,000    
1978 6801 Motorola - 8 5 μm 1 35,000    
1979 Z8000 Zilog - 16 - 1 17,500    
1979 8088 Intel 5 MHz 8/16 3 μm 1 29,000 NMOS (HMOS)  
1979 68000 Motorola 8 MHz 16/32 3.5 μm 1 68,000 NMOS (HMOS) [22]  

1980s

In the 1980s, 16-bit and 32-bit microprocessors were common among new designs, and CMOS technology overtook NMOS. Transistor count increased dramatically during the decade.

20世纪80年代,16位和32位微处理器在新设计中很常见,CMOS技术超过了NMOS。晶体管数量在这十年里急剧增加。

Key home computers which remained popular for much of the 1980s predominantly use processors developed in the 1970s. Versions of the MOS Technology 6502, first released in 1975, power the Commodore 64Apple IIeBBC Micro, and Atari 8-bit family. The Zilog Z80 (1976) is at the core of the ZX Spectrum.

在20世纪80年代的大部分时间里,主要家用电脑仍然很受欢迎,主要使用70年代开发的处理器。1975年首次发布的MOS Technology 6502版本为Commodore 64、Apple IIe、BBC Micro和Atari 8位系列提供动力。Zilog Z80(1976)是ZX光谱的核心。

The IBM PC launched in 1981 with an Intel 8088. It was not until Intel's 80286 (used in the 1984 IBM PC/AT), and later the 80386, that processors designed in the 1980s drove the computers of the 1980s. These chips had higher clock speeds and 32-bit memory access. The end of the decade saw the launch of the Intel 80486, the first personal computer CPU with on-chip floating point support instead of as an optional coprocessor.

IBM个人电脑于1981年推出,搭配了英特尔8088芯片。直到英特尔的80286(1984年用于IBM PC/AT)和后来的80386,在二十世纪八十年代设计的处理器才驱动了二十世纪八十年代的计算机。这些芯片具有更高的时钟速度和32位内存访问。在八十年代末,英特尔80486(80486是Intel公司1989年推出的32位微处理器。它采用了1μm(微米)制造工艺,内部集成了120万个晶体管。内外部数据总线是32位,地址总线为32位)发布,这是第一款支持芯片内浮点运算的个人计算机CPU,而不是作为可选的协处理器。

1.协处理器(coprocessor),一种芯片,用于减轻系统微处理器的特定处理任务。协处理器,这是一种协助中央处理器完成其无法执行或执行效率、效果低下的处理工作而开发和应用的处理器
2.

IBM PC的早期型号

型号 型号# 发布时间 CPU 特点
PC 5150 1981.08 8088 磁盘或磁带系统
XT 5160 1983.03 8088 首用IBM个人计算机硬盘内部标准。
XT/370 5160/588 1983.10 8088 5160与XT / 370选项组件和3278/79仿真适配器
3270 PC 5271 1983.10 8088 与3270终端仿真
PCjr 4860 1983.11 8088 基于软盘的家用电脑
Portable 5155 1984.02 8088 基于软盘的便携式
AT 5170 1984.08 80286 中速硬盘
AT/370 5170/599 1984.10 80286 有370选择工具及对3278/79仿真适配器的5170
3270 AT 5281 1985 .06 80286 与3270终端仿真
Convertible 5140 1986.04 8088 微型软磁盘 手提便携式
XT 286 5162 1986.09 80286 缓慢的硬盘,但零等待状态内存的主板。这6兆赫机器其实比8兆赫ATs(当使用平面的记忆,因为零点)等待状态

 

A mid-1980s generation of GUI-driven home computers is based around the Motorola 68000Macintosh (1984), Atari ST (1985), Amiga (1985), and X68000 (1987). Even the Sega Genesis game console, released in 1988-89, uses a 68000 as the main CPU and a Z80 for sound.

20世纪80年代中期,一代GUI驱动的家用电脑以摩托罗拉68000为基础:Macintosh(1984)、Atari ST(1985)、Amiga(1985)和X68000(1987)。就连1988-89年,发布的世嘉创世纪(Sega Genesis)游戏机也使用68000作为主CPU,Z80作为声音。(Zilog Z80,简称Z80,是一款由zilog公司制造的微处理器,与英特尔公司出产的8080微处理器的代码兼容)

DateNameDeveloperdata-sort-type="number" Clock data-sort-type="number" Word size
(bits)
data-sort-type="number" Process data-sort-type="number" Transistors
1980 16032 National Semiconductor - 16/32 - 60,000
1981 6120 Harris Corporation 10 MHz 12 - 20,000 (CMOS)[23]
1981 ROMP IBM 10 MHz 32 2 μm 45,000
1981 T-11 DEC 2.5 MHz 16 5 μm 17,000 (NMOS)
1982 RISC-I[24] UC Berkeley 1 MHz - 5 μm 44,420 (NMOS)
1982 FOCUS Hewlett Packard 18 MHz 32 1.5 μm 450,000
1982 80186 Intel 6 MHz 16 - 55,000
1987 80C186 Intel 10 MHz 16 - 56,000 (CMOS)
1982 80188 Intel 8 MHz 8/16 - 29,000
1982 80286 Intel 6 MHz 16 1.5 μm 134,000
1983 RISC-II UC Berkeley 3 MHz - 3 μm 40,760 (NMOS)
1983 MIPS[25] Stanford University 2 MHz 32 3 μm 25,000
1983 65816 Western Design Center - 16 - -
1984 68020 Motorola 16 MHz 32 2 μm 190,000
1984 NS32032 National Semiconductor - 32 - 70,000
1984 V20 NEC 5 MHz 8/16 - 63,000
1985 80386 Intel 16–40 MHz 32 1.5 μm 275,000
1985 MicroVax II 78032 DEC 5 MHz 32 3.0 μm 125,000
1985 R2000 MIPS 8 MHz 32 2 μm 115,000
1985[26] Novix NC4016 Harris Corporation 8 MHz 16 3 μm[27] 16,000[28]
1986 Z80000 Zilog - 32 - 91,000
1986 SPARC MB86900 Fujitsu[29] [30] [31] 40 MHz 32 0.8 μm 800,000
1986 V60[32] NEC 16 MHz 16/32 1.5 μm 375,000
1987 CVAX 78034 DEC 12.5 MHz 32 2.0 μm 134,000
1987 ARM2 Acorn 8 MHz 32 2 μm 25,000[33]
1987 Gmicro/200[34] Hitachi - - 1 μm 730,000
1987 68030 Motorola 16 MHz 32 1.3 μm 273,000
1987 V70 NEC 20 MHz 16/32 1.5 μm 385,000
1988 R3000 MIPS 25 MHz 32 1.2 μm 120,000
1988 80386SX Intel 12–33 MHz 16/32 - -
1988 i960 Intel 10 MHz 33/32 1.5 μm 250,000
1989 i960CA[35] Intel 1633 MHz 33/32 0.8 μm 600,000
1989 VAX DC520 "Rigel" DEC 35 MHz 32 1.5 μm 320,000
1989 80486 Intel 25 MHz 32 1 μm 1,180,000
1989 i860 Intel 25 MHz 32 1 μm 1,000,000  

1990s

The 32-bit microprocessor dominated the consumer market in the 1990s. Processor clock speeds increased by more than tenfold between 1990 and 1999,

20世纪90年代,32位微处理器统治(主导)了消费市场。处理器的时钟速度在1990年到1999年间增加了10倍多,

and 64-bit processors began to emerge later in the decade. In the 1990s,

64位处理器在这十年的晚些时候开始被知晓。在20世纪90年代,

 microprocessors no longer used the same clock speed for the processor and the RAM
微处理器不再被处理器和RAM使用相同的时钟速度。

Processors began to have a front-side bus (FSB) clock speed used in communication with RAM and other components.

处理器开始使用前端总线(FSB)时钟速度与RAM和其他组件进行通信。

Typically, the processor itself ran at a clock speed that was a multiple of the FSB clock speed.

通常,处理器本身的时钟速度是FSB时钟速度的倍数。
 Intel's Pentium III, for example, had an internal clock speed of 450–600 MHz and an FSB speed of 100–133 MHz. Only the processor's internal clock speed is shown here.

例如,英特尔的奔腾III内部时钟速度为450–600 MHz,FSB速度为100–133 MHz。此处仅表明的是处理器的内部时钟速度。

DateNameDeveloperdata-sort-type="number" Clock data-sort-type="number" Word size
(bits)
data-sort-type="number" Process data-sort-type="number" Transistors
(millions)
data-sort-type="number" Threads
1990 68040 Motorola 40 MHz 32 - 1.2  
1990 POWER1 IBM 20–30 MHz 32 1,000 nm 6.9  
1991 R4000 MIPS Computer Systems 100 MHz 64 800 nm 1.35  
1991 NVAX DEC 62.5–90.91 MHz - 750 nm 1.3  
1991 RSC IBM 33 MHz 32 800 nm 1.0[36]  
1992 SH-1 Hitachi 20 MHz[37] 32 800 nm 0.6[38]  
1992 Alpha 21064 DEC 100–200 MHz 64 750 nm 1.68  
1992 microSPARC I Sun 40–50 MHz 32 800 nm 0.8  
1992 PA-7100 Hewlett Packard 100 MHz 32 800 nm 0.85[39]  
1992 486SLC Cyrix 40 MHz 16      
1993 HARP-1 Hitachi 120 MHz - 500 nm 2.8[40]  
1993 PowerPC 601 IBMMotorola 50–80 MHz 32 600 nm 2.8  
1993 Pentium Intel 60–66 MHz 32 800 nm 3.1  
1993 POWER2 IBM 55–71.5 MHz 32 720 nm 23  
1994 microSPARC II Fujitsu 60–125 MHz - 500 nm 2.3  
1994 68060 Motorola 50 MHz 32 600 nm 2.5  
1994 Alpha 21064A DEC 200–300 MHz 64 500 nm 2.85  
1994 R4600   100–125 MHz 64 650 nm 2.2  
1994 PA-7200 Hewlett Packard 125 MHz 32 550 nm 1.26  
1994 PowerPC 603 IBMMotorola 60–120 MHz 32 500 nm 1.6  
1994 PowerPC 604 IBMMotorola 100–180 MHz 32 500 nm 3.6  
1994 PA-7100LC Hewlett Packard 100 MHz 32 750 nm 0.90  
1995 Alpha 21164 DEC 266–333 MHz 64 500 nm 9.3  
1995 UltraSPARC Sun 143–167 MHz 64 470 nm 5.2  
1995 SPARC64 HAL Computer Systems 101–118 MHz 64 400 nm -  
1995 Pentium Pro Intel 150–200 MHz 32 350 nm 5.5  
1996 Alpha 21164A DEC 400–500 MHz 64 350 nm 9.7  
1996 K5 AMD 75–100 MHz 32 500 nm 4.3  
1996 R10000 MTI 150–250 MHz 64 350 nm 6.7  
1996 R5000   180–250 MHz - 350 nm 3.7  
1996 SPARC64 II HAL Computer Systems 141–161 MHz 64 350 nm -  
1996 PA-8000 Hewlett-Packard 160–180 MHz 64 500 nm 3.8  
1996 P2SC IBM 150 MHz 32 290 nm 15  
1997 SH-4 Hitachi 200 MHz - 200 nm[41] 10[42]  
1997 RS64 IBM 125 MHz 64 ? nm ?  
1997 Pentium II Intel 233–300 MHz 32 350 nm 7.5  
1997 PowerPC 620 IBMMotorola 120–150 MHz 64 350 nm 6.9  
1997 UltraSPARC IIs Sun 250–400 MHz 64 350 nm 5.4  
1997 S/390 G4 IBM 370 MHz 32 500 nm 7.8  
1997 PowerPC 750 IBMMotorola 233–366 MHz 32 260 nm 6.35  
1997 K6 AMD 166–233 MHz 32 350 nm 8.8  
1998 RS64-II IBM 262 MHz 64 350 nm 12.5  
1998 Alpha 21264 DEC 450–600 MHz 64 350 nm 15.2  
1998 MIPS R12000 SGI 270–400 MHz 64 250180 nm 6.9  
1998 RM7000 QED 250–300 MHz - 250 nm 18  
1998 SPARC64 III HAL Computer Systems 250–330 MHz 64 240 nm 17.6  
1998 S/390 G5 IBM 500 MHz 32 250 nm 25  
1998 PA-8500 Hewlett Packard 300–440 MHz 64 250 nm 140  
1998 POWER3 IBM 200 MHz 64 250 nm 15  
1999 Emotion Engine SonyToshiba 294–300 MHz - 180–65 nm[43] 13.5[44]  
1999 Pentium III Intel 450–600 MHz 32 250 nm 9.5  
1999 RS64-III IBM 450 MHz 64 220 nm 34 2
1999 PowerPC 7400 Motorola 350–500 MHz 32 200–130 nm 10.5  
1999 Athlon AMD 500–1000 MHz 32 250 nm 22    

2000s

64-bit processors became mainstream in the 2000s.

64位处理器在21世纪初成为主流.

Microprocessor clock speeds reached a ceiling because of the heat dissipation barrier.

Instead of implementing expensive and impractical cooling systems, manufacturers turned to parallel computing in the form of the multi-core processor

微处理器的时钟速度达到了上限. 由于散热屏障,制造商没有制作昂贵且不切实际的冷却系统,而是转向多核处理器形式的并行计算。

Overclocking had its roots in the 1990s, but came into its own in the 2000s.

Off-the-shelf cooling systems designed for overclocked processors became common, and the gaming PC had its advent as well. Over the decade, transistor counts increased by about an order of magnitude, a trend continued from previous decades. Process sizes decreased about fourfold, from 180 nm to 45 nm.

超频起源于20世纪90年代,但在21世纪初开始流行。为超频处理器设计的现成冷却系统变得很常见,游戏PC也出现了。在过去的十年里,晶体管数量增加了大约一个数量级,这一趋势延续了过去几十年。工艺尺寸减少了约四倍,从180纳米降至45纳米。

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
2000 Athlon XP AMD 1.33–1.73 GHz 180 nm 37.5 1 / 1
2000 Duron AMD 550 MHz–1.3 GHz 180 nm 25 1 / 1
2000 RS64-IV IBM 600–750 MHz 180 nm 44 1 / 2
2000 Pentium 4 Intel 1.3–2 GHz 180–130 nm 42 1 / 1
2000 SPARC64 IV Fujitsu 450–810 MHz 130 nm - 1 / 1
2000 z900 IBM 918 MHz 180 nm 47 1 / 12, 20
2001 MIPS R14000 SGI 500–600 MHz 130 nm 7.2 1 / 1
2001 POWER4 IBM 1.1–1.4 GHz 180–130 nm 174 2 / 1, 4
2001 UltraSPARC III Sun 750–1200 MHz 130 nm 29 1 / 1
2001 Itanium Intel 733–800 MHz 180 nm 25 1 / 1
2001 PowerPC 7450 Motorola 733–800 MHz 180–130 nm 33 1 / 1
2002 SPARC64 V Fujitsu 1.1–1.35 GHz 130 nm 190 1 / 1
2002 Itanium 2 Intel 0.9–1 GHz 180 nm 410 1 / 1
2003 PowerPC 970 IBM 1.6–2.0 GHz 130–90 nm 52 1 / 1
2003 Pentium M Intel 0.9–1.7 GHz 130–90 nm 77 1 / 1
2003 Opteron AMD 1.4–2.4 GHz 130 nm 106 1 / 1
2004 POWER5 IBM 1.65–1.9 GHz 130–90 nm 276 2 / 1, 2, 4
2004 PowerPC BGL IBM 700 MHz 130 nm 95 2 / 1
2005 Opteron "Athens" AMD 1.6–3.0 GHz 90 nm 114 1 / 1
2005 Pentium D Intel 2.8–3.2 GHz 90 nm 115 1 / 2
2005 Athlon 64 X2 AMD 2–2.4 GHz 90 nm 243 2 / 1
2005 PowerPC 970MP IBM 1.2–2.5 GHz 90 nm 183 2 / 1
2005 UltraSPARC IV Sun 1.05–1.35 GHz 130 nm 66 2 / 1
2005 UltraSPARC T1 Sun 1–1.4 GHz 90 nm 300 8 / 1
2005 Xenon IBM 3.2 GHz 90–45 nm 165 3 / 1
2006 Core Duo Intel 1.1–2.33 GHz 90–65 nm 151 2 / 1
2006 Core 2 Intel 1.06–2.67 GHz 65–45 nm 291 2 / 1, 2
2006 Cell/B.E. IBMSonyToshiba 3.2–4.6 GHz 90–45 nm 241 1+8 / 1
2006 Itanium "Montecito" Intel 1.4–1.6 GHz 90 nm 1720 2 / 1
2007 POWER6 IBM 3.5–4.7 GHz 65 nm 790 2 / 1
2007 SPARC64 VI Fujitsu 2.15–2.4 GHz 90 nm 543 2 / 1
2007 UltraSPARC T2 Sun 1–1.4 GHz 65 nm 503 8 / 1
2007 TILE64 Tilera 600–900 MHz 90–45 nm ? 64 / 1
2007 Opteron "Barcelona" AMD 1.8–3.2 GHz 65 nm 463 4 / 1
2007 PowerPC BGP IBM 850 MHz 90 nm 208 4 / 1
2008 Phenom AMD 1.8–2.6 GHz 65 nm 450 2, 3, 4 / 1
2008 z10 IBM 4.4 GHz 65 nm 993 4 / 7
2008 PowerXCell 8i IBM 2.8–4.0 GHz 65 nm 250 1+8 / 1
2008 SPARC64 VII Fujitsu 2.4–2.88 GHz 65 nm 600 4 / 1
2008 Atom Intel 0.8–1.6 GHz 65–45 nm 47 1 / 1
2008 Core i7 Intel 2.66–3.2 GHz 45–32 nm 730 2, 4, 6 / 1
2008 TILEPro64 Tilera 600–866 MHz 90–45 nm ? 64 / 1
2008 Opteron "Shanghai" AMD 2.3–2.9 GHz 45 nm 751 4 / 1
2009 Phenom II AMD 2.5–3.2 GHz 45 nm 758 2, 3, 4, 6 / 1
2009 Opteron "Istanbul" AMD 2.2–2.8 GHz 45 nm 904 6 / 1  

2010s

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
threads
per core
2010 POWER7 IBM 3–4.14 GHz 45 nm 1200 4, 6, 8 / 1, 4 4
2010 Itanium "Tukwila" Intel 2 GHz 65 nm 2000 2, 4 / 1 2
2010 Opteron "Magny-cours" AMD 1.7–2.4 GHz 45 nm 1810 4, 6 / 2 1
2010 Xeon "Nehalem-EX" Intel 1.73–2.66 GHz 45 nm 2300 4, 6, 8 / 1 2
2010 z196 IBM 3.8–5.2 GHz 45 nm 1400 4 / 1, 6 1
2010 SPARC T3 Sun 1.6 GHz 45 nm 2000 16 / 1 8
2010   Fujitsu 2.66–3.0 GHz 45 nm ? 4 / 1 2
2010   Intel 1.86–3.33 GHz 32 nm 1170 4–6 / 1 2
2011   Intel 1.6–3.4 GHz 32 nm 995[45] 2, 4 / 1 (1,) 2
2011   AMD 1.0–1.6 GHz 40 nm 380[46] 1, 2 / 1 1
2011   Intel 1.73–2.67 GHz 32 nm 2600 4, 6, 8, 10 / 1 1–2
2011   IBM 1.6 GHz 45 nm 1470 18 / 1 4
2011   Fujitsu 2.0 GHz 45 nm 760 8 / 1 2
2011   AMD 3.1–3.6 GHz 32 nm 1200[47] 4–8 / 2 1
2011 SPARC T4 Oracle 2.8–3 GHz 40 nm 855 8 / 1 8
2012 SPARC64 IXfx Fujitsu 1.848 GHz 40 nm 1870 16 / 1 2
2012 zEC12 IBM 5.5 GHz 32 nm 2750 6 / 6 1
2012 POWER7+ IBM 3.1–5.3 GHz 32 nm 2100 8 / 1, 2 4
2012 Itanium "Poulson" Intel 1.73–2.53 GHz 32 nm 3100 8 / 1 2
2013 Intel "Haswell" Intel 1.9–4.4 GHz 22 nm 1400 4 / 1 2
2013 SPARC64 X Fujitsu 2.8–3 GHz 28 nm 2950 16 / 1 2
2013 SPARC T5 Oracle 3.6 GHz 28 nm 1500 16 / 1 8
2014 POWER8 IBM 2.5–5 GHz 22 nm 4200 6, 12 / 1, 2 8
2014 Intel "Broadwell" Intel 1.8-4 GHz 14 nm 1900 2, 4, 6, 8, 12, 16 / 1, 2, 4 2
2015 z13 IBM 5 GHz 22 nm 3990 8 / 1 2
2015 A8-7670K AMD 3.6 GHz 28 nm 2410 4 / 1 1
2017 Zen AMD 3.2–4.1 GHz 14 nm 4800 8, 16, 32 / 1, 2, 4 2
2017 z14 IBM 5.2 GHz 14 nm 6100 10 / 1 2
2017 POWER9 IBM 4 GHz 14 nm 8000 12, 24 / 1 4, 8
2017 SPARC M8[48] Oracle 5 GHz 20 nm ~10,000[49] 32 8
2018 Intel "Cannon Lake" Intel 2.2-3.2 GHz 10 nm ? 2 / 1 2
2018 Zen+ AMD 2.8-3.7 GHz 12 nm 4800 2, 4, 6, 8, 12, 16, 24, 32 / 1, 2, 4 1, 2
2019 Zen 2 AMD 2-4.7 GHz 7 nm 3900 6, 8, 12, 16, 24, 32, 64 / 1, 2, 4 2
2019 z15 IBM 5.2 GHz 14 nm 9200 12 / 1 2
 

2020s

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
threads
per core
2020 Zen 3 AMD 3.4–4.9 GHz 7 nm ? 6, 8, 12, 16 / 2
2020 M1 Apple 3.2 GHz 5 nm 16000 8 1  

See also

References and notes

References
  • Notes
  • sandpile.org for x86 processor information
  • Ogdin . Jerry . Microprocessor scorecard . Euromicro Newsletter . 1 . 2 . 43–77 . January 1975 . 10.1016/0303-1268(75)90008-5 .

Notes and References

    1. Book: Belzer . Jack . Holzman . Albert G. . Kent . Allen . Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification . 1978 . . 9780824722609 . 402 .
    2. Web site: 1970s: Development and evolution of microprocessors . Semiconductor History Museum of Japan . dead . https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf . 2019-06-27 . 16 September 2020.
    3. Web site: Rockwell PPS-4. The Antique Chip Collector's Page. 2010-06-14.
    4. Ryoichi Mori. Hiroaki Tajima. Morihiko Tajima. Yoshikuni Okada. October 1977. Microprocessors in Japan. Euromicro Newsletter. 3. 4. 50–7 (51, Table 2.2). 10.1016/0303-1268(77)90111-0.
    5. Web site: NEC 751 (uCOM-4). The Antique Chip Collector's Page. https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm. 2011-05-25. dead. 2010-06-11.
    6. Web site: 1973: 12-bit engine-control microprocessor (Toshiba) . Semiconductor History Museum of Japan . dead . https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf . 2019-06-27 . 16 September 2020.
    7. Encyclopedia: Allen Kent, James G. Williams . Encyclopedia of Microcomputers . 1990 . Marcel Dekker . 7 . Evolution of Computerized Maintenance Management to Generation of Random Numbers . 0-8247-2706-1 . 336 .
    8. Web site: Jeff . Little . Intersil Intercept Jr . 2009-03-04 . ClassicCmp .
    9. Web site: Intersil IM6100 CMOS 12 Bit Microprocessor family databook .
    10. Web site: RCA COSMAC 1801 . The Antique Chip Collector's Page . 2010-06-14.
    11. CDP 1800 μP Commercially available . Microcomputer Digest . 2 . 4 . 1–3 . October 1975 .
    12. Web site: National Semiconductor IMP-16. https://web.archive.org/web/20020207082859/http://www.antiquetech.com/chips/NSIMP-16.htm. dead. 2002-02-07. The Antique Chip Collector's Page. 2010-06-14.
    13. Web site: Hybrid Microprocessor . 2008-06-15 .
    14. HP designs Custom 16-bit μC Chip . Microcomputer Digest . 2 . 4 . 8 . October 1975 .
    15. David Russell . Microprocessor survey . Microprocessors . 2 . 1 . 13–20, See p. 18 . February 1978 . 10.1016/0308-5953(78)90071-5.
    16. Web site: Microprocessors — The Early Years 1971–1974 . The Antique Chip Collector's Page . 2010-06-16.
    17. Web site: CP1600 16-Bit Single-Chip Microprocessor . 1977 . data sheet . General Instrument . 2010-06-18 . dead . https://web.archive.org/web/20110526031123/http://www.rhoent.com/cp_lp.pdf . 2011-05-26 .
    18. Web site: RCA COSMAC 1802 . The Antique Chip Collector's Page . 2010-06-14 . dead . https://web.archive.org/web/20130102213115/http://www.antiquetech.com/chips/RCA1802.htm . 2013-01-02 .
    19. CDP 1802 . Microcomputer Digest . 2 . 10 . 1, 4 . April 1976 .
    20. Hans Hoffman . John Nemec . A fast microprocessor for control applications . Euromicro Newsletter . 3 . 3 . 53–59 . April 1977 . 10.1016/0303-1268(77)90010-4.
    21. Web site: Microprocessors — The Explosion 1975–1976 . The Antique Chip Collector's Page . 2010-06-18 . dead . https://web.archive.org/web/20090909151455/http://www.antiquetech.com/history/mpu1975-1976.htm . 2009-09-09 .
    22. Web site: Chip Hall of Fame: Motorola MC68000 Microprocessor . . . 19 June 2019 . 30 June 2017.
    23. Book: Harris CMOS Digital Data Book . 4–3–21 .
    24. Web site: Berkeley Hardware Prototypes . 2008-06-15.
    25. 10.1145/2465.214917. Reduced instruction set computers. 1985. Patterson, David A.. Communications of the ACM. 28. 8–21. 1493886.
    26. Web site: Forth chips list . 2010 . UltraTechnology .
    27. Book: Koopman, Philip J. . 4.4 Architecture of the NOVIX NC4016 . https://www.ece.cmu.edu/~koopman/stack_computers/sec4_4.html . Stack Computers: the new wave . E. Horwood . 1989 . 0745804187 .
    28. Tom . Hand . The Harris RTX 2000 Microcontroller . Journal of Forth Application and Research . 6 . 1 . 0738-2022 . 1994 .
    29. Web site: Fujitsu to take ARM into the realm of Super . The CPU Shack Museum . June 21, 2016 . 30 June 2019.
    30. Web site: Fujitsu SPARC . cpu-collection.de . 30 June 2019.
    31. Web site: Timeline . . 30 June 2019.
    32. Kimura S, Komoto Y, Yano Y . Implementation of the V60/V70 and its FRM function . IEEE Micro . 8 . 2 . 22–36 . 1988 . 10.1109/40.527 . 9507994 .
    33. C Green . P Gülzow . L Johnson . K Meinzer . J Miller . The Experimental IHU-2 Aboard P3D . Amsat Journal . 22 . 2 . Mar–Apr 1999 . The first processor using these principles, called ARM-1, was fabricated by VLSI in April 1985, and gave startling performance for the time, whilst using barely 25,000 transistors.
    34. Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K . Realization of Gmicro/200 . IEEE Micro . 8 . 2 . 12–21 . 1988 . 10.1109/40.526 . 36938046 .
    35. Web site: Intel i960 Embedded Microprocessor . https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html . dead . 3 March 2003 . . . 29 June 2019 . 3 March 2003.
    36. Moore CR, Balser DM, Muhich JS, East RE . IBM Single Chip RISC Processor (RSC) . Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors . IEEE Computer Society . 200–4 . 1992 . 0-8186-3110-4.
    37. Embedded-DSP SuperH Family and Its Applications . Hitachi Review . 1998 . 47 . 4 . 121–7 . . 43356065 . https://web.archive.org/web/20190225114235/http://pdfs.semanticscholar.org/5ef8/dda794a72f0f9c3c347b0a2db9bd1a081571.pdf . dead . 2019-02-25 . 5 July 2019.
    38. Web site: SH Microprocessor Leading the Nomadic Era . Semiconductor History Museum of Japan . 27 June 2019.
    39. Web site: PA-RISC Processors . 2008-05-11 .
    40. Web site: HARP-1: A 120 MHz Superscalar PA-RISC Processor . . 19 June 2019.
    41. Entertainment Systems and High-Performance Processor SH-4 . Hitachi Review . 1999 . 48 . 2 . 58–63 . . 44852046 . https://web.archive.org/web/20190221030542/http://pdfs.semanticscholar.org/2dae/557444cd159c68d9a557189c70a68de0d233.pdf . dead . 2019-02-21 . 27 June 2019.
    42. Web site: Remembering the Sega Dreamcast . . 18 June 2019 . September 29, 2009.
    43. News: EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP . 26 June 2019 . . April 21, 2003.
    44. Book: Hennessy. John L. . John L. Hennessy . Patterson. David A. . David Patterson (scientist). Computer Architecture: A Quantitative Approach. 491. 9 April 2013. 3. 29 May 2002. Morgan Kaufmann. 978-0-08-050252-6.
    45. Web site: Anand Lal Shimpi . A Closer Look at the Sandy Bridge Die . 10 January 2011 . AnandTech .
    46. Book: renethx . Cedar (HD 5450) and Zacate (E350) are manufactured in TSMC 40 nm process . AMD Zacate — the next great HTPC chip? . 10 November 2011 . AVS Forum . http://www.avsforum.com/avs-vb/showthread.php?s=75ab046a2a3e7839557c22b89ff1ccd5&p=19470009#post19470009.
    47. Web site: AMD Revises Bulldozer Transistor Count: 1.2B, not 2B . 2 December 2011 . AnandTech .
    48. Web site: Sparc M8 processor . Oracle main website . Oracle Corp . 3 March 2019.
    49. https://www.nextplatform.com/2017/09/18/m8-last-hurrah-oracle-sparc/

标签:nm,16,微处理器,32,GHz,chronology,MHz,Microprocessor,Intel
来源: https://www.cnblogs.com/aozhejin/p/16132491.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有