ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

PyTorch 介绍 | BUILD THE NEURAL NETWORK

2022-02-07 14:34:45  阅读:290  来源: 互联网

标签:NETWORK nn torch device PyTorch BUILD 0.0000 512 Size


神经网络由对数据进行操作的layers/modules组成。torch.nn 命名空间提供了所有你需要的构建块,用于构建你自己的神经网络。PyTorch的每一个module都继承自nn.Module。神经网络本身也是包含其它module(layer)的module。这种嵌套结构允许轻松构建和管理复杂的架构。

下面,我们将构建一个神经网络分类FashionMNIST数据集的图片

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

为训练获取设备

如果可以的话,我们想要能够在一个类似于GPU的硬件加速器上训练模型。检查torch.cuda,否则继续使用CPU。

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using {device} device")

输出:

Using cuda device

定义类

通过继承 nn.Module 定义我们的神经网络。利用 __init__ 初始化神经网络的layers。每个 nn.Module 的子类利用 forward 方法对输入数据进行操作。

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )
    
    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

创建 NeuralNetwork 实例,并将其转移到 device,并打印它的结构

model = NeuralNetwork().to(device)
print(model)

输出:

NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)

为使用模型,我们传入input data。这将沿着一些background operations执行模型的 forward。不要直接调用 model.forward()

将input输入模型返回维度大小为10的tensor,包含对每个类的原始预测值。我们通过将其传入 nn.Softmax module的实例获取预测概率值。

X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probab = nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

输出:

Predicted class: tensor([1], device='cuda:0')

Model Layers

让我们来分解一下FashionMNIST模型的layers。为了说明,我们构建了一个具有3个28x28图片样本的minibatch,观察将其输入网络后发生了什么。

input_image = torch.rand(3, 28, 28)
print(input_image.size())

输出:

torch.size([3, 28, 28])

nn.Flatten

初始化 nn.Flatten 层,将每一个2D 28x28图片转换为一个连续的具有784像素值的数组(保留minibatch维度(dim=0))。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.size())

输出:

torch.Size([3, 784])

nn.Linear

linear layer也是一个module,它是对input使用保存的权重和偏置进行线性变换。

layer1 = nn.Linear(in_features=28*28, out_features=20)
hidden1 = layer1(flat_image)
print(hidden1.size())

输出:

torch.Size([3, 20])

nn.ReLU

非线性激活函数在模型的输入和输出之间创建了复杂的映射关系,它们在线性转换后用以引入非线性,帮助网络学习到各种各样的现象。

在此模型中,我们在线性层之间使用nn.ReLU,但也可以在你的模型中使用其它激活函数引入非线性。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

输出:

点击查看代码
Before ReLU: tensor([[-0.2541, -0.1397,  0.2342,  0.1364, -0.0437,  0.3759,  0.2808, -0.0619,
          0.2780,  0.2830, -0.4725,  0.4298,  0.2717, -0.1618, -0.0604,  0.3242,
         -0.5874, -0.5922, -0.2481, -0.4181],
        [-0.1339, -0.1163,  0.1688,  0.1112,  0.1179,  0.3560,  0.0990, -0.1398,
          0.2619, -0.1023, -0.7150, -0.1186,  0.3338, -0.0817,  0.1983, -0.2084,
         -0.3889, -0.2361, -0.0752, -0.2144],
        [-0.1284,  0.0683,  0.0707,  0.0997, -0.2274,  0.4379,  0.1461,  0.0949,
          0.2710, -0.0563, -0.6621, -0.3552,  0.4966,  0.2304,  0.0020, -0.0470,
         -0.6260, -0.2077, -0.0790, -0.4635]], grad_fn=<AddmmBackward0>)


After ReLU: tensor([[0.0000, 0.0000, 0.2342, 0.1364, 0.0000, 0.3759, 0.2808, 0.0000, 0.2780,
         0.2830, 0.0000, 0.4298, 0.2717, 0.0000, 0.0000, 0.3242, 0.0000, 0.0000,
         0.0000, 0.0000],
        [0.0000, 0.0000, 0.1688, 0.1112, 0.1179, 0.3560, 0.0990, 0.0000, 0.2619,
         0.0000, 0.0000, 0.0000, 0.3338, 0.0000, 0.1983, 0.0000, 0.0000, 0.0000,
         0.0000, 0.0000],
        [0.0000, 0.0683, 0.0707, 0.0997, 0.0000, 0.4379, 0.1461, 0.0949, 0.2710,
         0.0000, 0.0000, 0.0000, 0.4966, 0.2304, 0.0020, 0.0000, 0.0000, 0.0000,
         0.0000, 0.0000]], grad_fn=<ReluBackward0>)

nn.Sequential

nn.Sequential是modules的排序容器。输入数据根据所定义的,按照相同的顺序依次通过所有module。你可以使用顺序容器快速组建一个网络,如 seq_modules

seq_modules = nn.Sequential(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Linear(20, 10)
)
input_image = torch.rand(3, 28, 28)
logits = seq_modules(input_image)

nn.Softmax

神经网络的最后一个线性层返回logits - 原始数值,范围是[-infty, infty] - 传入nn.Softmax module。logits被缩放到[0, 1],表示了模型对每个类别的预测概率值。dim 参数指定了元素的和为1的维度。

softmax = nn.Softmax(dim=1)
pred_probab = softmax(logits)

模型参数

许多神经网络中的层都是参数化的,即具有训练过程中可被优化的相关权重和偏置。继承nn.Module自动跟踪模型对象定义的所有区域,并使得所有参数都可通过模型的 parameters()named_parameters()方法访问。

print("Model structure: ", model, '\n\n')

for name, param in model.named_parameters():
    print(f:"Layer: {} | Size: {param.size()} | Values: {param[:2]} \n")

输出:

点击查看代码
Model structure:  NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)


Layer: linear_relu_stack.0.weight | Size: torch.Size([512, 784]) | Values : tensor([[-0.0169,  0.0327, -0.0128,  ..., -0.0273,  0.0193, -0.0197],
        [ 0.0309,  0.0003, -0.0232,  ...,  0.0284, -0.0163,  0.0171]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.0.bias | Size: torch.Size([512]) | Values : tensor([-0.0060, -0.0333], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512]) | Values : tensor([[-0.0294,  0.0120, -0.0287,  ..., -0.0280, -0.0299,  0.0083],
        [ 0.0260, -0.0075,  0.0430,  ..., -0.0196, -0.0200,  0.0145]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.bias | Size: torch.Size([512]) | Values : tensor([-0.0003, -0.0043], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512]) | Values : tensor([[-0.0287, -0.0199, -0.0147,  ...,  0.0074,  0.0403,  0.0068],
        [ 0.0375, -0.0005,  0.0372,  ..., -0.0426, -0.0094, -0.0081]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.bias | Size: torch.Size([10]) | Values : tensor([-0.0347,  0.0438], device='cuda:0', grad_fn=<SliceBackward0>)

延伸阅读

标签:NETWORK,nn,torch,device,PyTorch,BUILD,0.0000,512,Size
来源: https://www.cnblogs.com/DeepRS/p/15740936.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有