ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【OpenCV 完整例程】88. 频率域拉普拉斯高通滤波

2022-02-03 09:06:55  阅读:291  来源: 互联网

标签:plt 例程 cv2 完整 OpenCV 88 图像 通滤波


【OpenCV 完整例程】88. 频率域拉普拉斯高通滤波

欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中


4.3 频率域拉普拉斯高通滤波

拉普拉斯算子(Laplace)是导数算子,会突出图像中的急剧灰度变化,抑制灰度缓慢变化区域,往往会产生暗色背景下的灰色边缘和不连续图像。将拉普拉斯图像与原图叠加,可以得到保留锐化效果的图像。

拉普拉斯算子(Laplace)是最简单的各向同性导数算子(卷积核):
∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 ∂ 2 f ∂ x 2 = f ( x + 1 , y ) − 2 f ( x , y ) + f ( x − 1 , y ) ∂ 2 f ∂ y 2 = f ( x , y + 1 ) − 2 f ( x , y ) + f ( x , y − 1 ) ∇ 2 f ( x , y ) = f ( x + 1 , y ) + f ( x − 1 , y ) + f ( x , y + 1 ) + f ( x , y − 1 ) − 4 f ( x , y ) \begin{aligned} \nabla ^2 f &= \dfrac{\partial ^2 f}{\partial x ^2} + \dfrac{\partial ^2 f}{\partial y ^2} \\ \dfrac{\partial ^2 f}{\partial x ^2} &= f(x+1,y) - 2f(x,y) + f(x-1,y) \\ \dfrac{\partial ^2 f}{\partial y ^2} &= f(x,y+1) - 2f(x,y) + f(x,y-1) \\ \nabla ^2 f(x,y) &= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y) \end{aligned} ∇2f∂x2∂2f​∂y2∂2f​∇2f(x,y)​=∂x2∂2f​+∂y2∂2f​=f(x+1,y)−2f(x,y)+f(x−1,y)=f(x,y+1)−2f(x,y)+f(x,y−1)=f(x+1,y)+f(x−1,y)+f(x,y+1)+f(x,y−1)−4f(x,y)​

于是可以得到空间域拉普拉斯核 K1,考虑对角项后可以得到拉普拉斯核 K2。

K 1 = [ 0 1 0 1 − 4 1 0 1 0 ] ,   K 2 = [ 1 1 1 1 − 8 1 1 1 1 ] ,   K 3 = [ 0 − 1 0 − 1 4 − 1 0 − 1 0 ] ,   K 4 = [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] K1= \begin{bmatrix} 0 & 1 &0\\ 1 & -4 &1\\ 0 & 1 &0\\ \end{bmatrix}, \ K2= \begin{bmatrix} 1 & 1 &1\\ 1 & -8 &1\\ 1 & 1 &1\\ \end{bmatrix}, \ K3= \begin{bmatrix} 0 & -1 &0\\ -1 & 4 &-1\\ 0 & -1 &0\\ \end{bmatrix}, \ K4= \begin{bmatrix} -1 & -1 &-1\\ -1 & 8 &-1\\ -1 & -1 &-1\\ \end{bmatrix} K1=⎣⎡​010​1−41​010​⎦⎤​, K2=⎣⎡​111​1−81​111​⎦⎤​, K3=⎣⎡​0−10​−14−1​0−10​⎦⎤​, K4=⎣⎡​−1−1−1​−18−1​−1−1−1​⎦⎤​

在频率域中拉普拉斯算子可以用传递函数描述:

H ( u , v ) = − 4 π 2 ( u 2 + v 2 ) H(u,v) = - 4 \pi ^2 (u^2 + v^2) H(u,v)=−4π2(u2+v2)
采用 D(u,v) 表示到频率中心的距离函数,可以进一步表示为:
H ( u , v ) = − 4 π 2 [ ( u − P / 2 ) 2 + ( v − Q / 2 ) 2 ] = − 4 π 2 D 2 ( u , v ) H(u,v) = - 4 \pi ^2 [(u-P/2)^2 + (v-Q/2)^2] = - 4 \pi ^2 D^2(u,v) H(u,v)=−4π2[(u−P/2)2+(v−Q/2)2]=−4π2D2(u,v)

于是,

∇ 2 f ( x , y ) = J − 1 { H ( u , v ) F ( u , v ) } g ( x , y ) = f ( x , y ) + c ∇ 2 f ( x , y ) = J − 1 { [ 1 + 4 π 2 D 2 ( u , v ) ] F ( u , v ) } \nabla ^2 f(x,y) = J^{-1} \{H(u,v) F(u,v)\}\\ g(x,y)= f(x,y) + c \nabla ^2 f(x,y) \\ = J^{-1} \{[1+4 \pi ^2 D^2(u,v)] F(u,v)\} ∇2f(x,y)=J−1{H(u,v)F(u,v)}g(x,y)=f(x,y)+c∇2f(x,y)=J−1{[1+4π2D2(u,v)]F(u,v)}


例程 8.27:频率域图像锐化(拉普拉斯算子)

# OpenCVdemo08.py
# Demo08 of OpenCV
# 8. 图像的频率域滤波
# Copyright 2021 Youcans, XUPT
# Crated:2021-12-30    

# 8.27:频率域图像锐化(拉普拉斯算子)
    def LaplacianFilter(shape):  # 频域 Laplacian 滤波器
        u, v = np.mgrid[-1:1:2.0/shape[0], -1:1:2.0/shape[1]]
        D = np.sqrt(u**2 + v**2)
        kernel = -4 * np.pi**2 * D**2
        return kernel

    def imgHPfilter(image, lpTyper="Laplacian"):  # 频域高通滤波
        # (1) 中心化, centralized 2d array f(x,y) * (-1)^(x+y)
        mask = np.ones(image.shape)
        mask[1::2, ::2] = -1
        mask[::2, 1::2] = -1
        fImage = image * mask  # f(x,y) * (-1)^(x+y)

        # (2) 最优 DFT 扩充尺寸, 快速傅里叶变换的尺寸扩充
        rows, cols = image.shape[:2]  # 原始图片的高度和宽度
        rPadded = cv2.getOptimalDFTSize(rows)  # 最优 DFT 扩充尺寸
        cPadded = cv2.getOptimalDFTSize(cols)  # 用于快速傅里叶变换

        # (3) 边缘扩充(补0), 快速傅里叶变换
        dftImage = np.zeros((rPadded, cPadded, 2), np.float32)  # 对原始图像进行边缘扩充
        dftImage[:rows, :cols, 0] = fImage  # 边缘扩充,下侧和右侧补0
        cv2.dft(dftImage, dftImage, cv2.DFT_COMPLEX_OUTPUT)  # 快速傅里叶变换 (rPad, cPad, 2)

        # (4) 构建 频域滤波器传递函数: 以 Laplacian 为例
        LapFilter = LaplacianFilter((rPadded, cPadded))  # 拉普拉斯滤波器

        # (5) 在频率域修改傅里叶变换: 傅里叶变换 点乘 滤波器传递函数
        dftFilter = np.zeros(dftImage.shape, dftImage.dtype)  # 快速傅里叶变换的尺寸(优化尺寸)
        for j in range(2):
            dftFilter[:rPadded, :cPadded, j] = dftImage[:rPadded, :cPadded, j] * LapFilter

        # (6) 对高通傅里叶变换 执行傅里叶逆变换,并只取实部
        idft = np.zeros(dftImage.shape[:2], np.float32)  # 快速傅里叶变换的尺寸(优化尺寸)
        cv2.dft(dftFilter, idft, cv2.DFT_REAL_OUTPUT + cv2.DFT_INVERSE + cv2.DFT_SCALE)

        # (7) 中心化, centralized 2d array g(x,y) * (-1)^(x+y)
        mask2 = np.ones(dftImage.shape[:2])
        mask2[1::2, ::2] = -1
        mask2[::2, 1::2] = -1
        idftCen = idft * mask2  # g(x,y) * (-1)^(x+y)

        # (8) 截取左上角,大小和输入图像相等
        result = np.clip(idftCen, 0, 255)  # 截断函数,将数值限制在 [0,255]
        imgFilter = result.astype(np.uint8)
        imgFilter = imgFilter[:rows, :cols]
        return imgFilter


    # (1) 读取原始图像
    img = cv2.imread("../images/Fig0338a.tif", flags=0)  # NASA 月球影像图
    rows, cols = img.shape[:2]  # 图片的高度和宽度
    print(rows, cols)

    # (2) 空间域 拉普拉斯算子 (Laplacian)
    # 使用函数 filter2D 实现 Laplace 卷积算子
    kernLaplace = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]])  # Laplacian kernel
    imgLaplace1 = cv2.filter2D(img, -1, kernLaplace, borderType=cv2.BORDER_REFLECT)
    # 使用 cv2.Laplacian 实现 Laplace 卷积算子
    imgLaplace2 = cv2.Laplacian(img, -1, ksize=3)
    imgLapReSpace = cv2.add(img, imgLaplace2)  # 恢复原图像

    # (3) 频率域 拉普拉斯算子 (Laplacian)
    imgLaplace = imgHPfilter(img, "Laplacian")  # 调用自定义函数 imgHPfilter()
    imgLapRe = cv2.add(img, imgLaplace)  # 恢复原图像

    plt.figure(figsize=(10, 6))
    plt.subplot(131), plt.imshow(img, 'gray'), plt.title("Origin from NASA"), plt.xticks([]), plt.yticks([])
    plt.subplot(132), plt.imshow(imgLapReSpace, 'gray'), plt.title("Spatial Lapalacian"), plt.xticks([]), plt.yticks([])
    plt.subplot(133), plt.imshow(imgLapRe, 'gray'), plt.title("Freauency Lapalacian"), plt.xticks([]), plt.yticks([])
    plt.tight_layout()
    plt.show()

在这里插入图片描述


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接

Copyright 2021 youcans, XUPT

Crated:2022-2-1


欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

【OpenCV 完整例程】01. 图像的读取(cv2.imread)
【OpenCV 完整例程】02. 图像的保存(cv2.imwrite)
【OpenCV 完整例程】03. 图像的显示(cv2.imshow)
【OpenCV 完整例程】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 完整例程】05. 图像的属性(np.shape)
【OpenCV 完整例程】06. 像素的编辑(img.itemset)
【OpenCV 完整例程】07. 图像的创建(np.zeros)
【OpenCV 完整例程】08. 图像的复制(np.copy)
【OpenCV 完整例程】09. 图像的裁剪(cv2.selectROI)
【OpenCV 完整例程】10. 图像的拼接(np.hstack)
【OpenCV 完整例程】11. 图像通道的拆分(cv2.split)
【OpenCV 完整例程】12. 图像通道的合并(cv2.merge)
【OpenCV 完整例程】13. 图像的加法运算(cv2.add)
【OpenCV 完整例程】14. 图像与标量相加(cv2.add)
【OpenCV 完整例程】15. 图像的加权加法(cv2.addWeight)
【OpenCV 完整例程】16. 不同尺寸的图像加法
【OpenCV 完整例程】17. 两张图像的渐变切换
【OpenCV 完整例程】18. 图像的掩模加法
【OpenCV 完整例程】19. 图像的圆形遮罩
【OpenCV 完整例程】20. 图像的按位运算
【OpenCV 完整例程】21. 图像的叠加
【OpenCV 完整例程】22. 图像添加非中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】24. 图像的仿射变换
【OpenCV 完整例程】25. 图像的平移
【OpenCV 完整例程】26. 图像的旋转(以原点为中心)
【OpenCV 完整例程】27. 图像的旋转(以任意点为中心)
【OpenCV 完整例程】28. 图像的旋转(直角旋转)
【OpenCV 完整例程】29. 图像的翻转(cv2.flip)
【OpenCV 完整例程】30. 图像的缩放(cv2.resize)
【OpenCV 完整例程】31. 图像金字塔(cv2.pyrDown)
【OpenCV 完整例程】32. 图像的扭变(错切)
【OpenCV 完整例程】33. 图像的复合变换
【OpenCV 完整例程】34. 图像的投影变换
【OpenCV 完整例程】35. 图像的投影变换(边界填充)
【OpenCV 完整例程】36. 直角坐标与极坐标的转换
【OpenCV 完整例程】37. 图像的灰度化处理和二值化处理
【OpenCV 完整例程】38. 图像的反色变换(图像反转)
【OpenCV 完整例程】39. 图像灰度的线性变换
【OpenCV 完整例程】40. 图像分段线性灰度变换
【OpenCV 完整例程】41. 图像的灰度变换(灰度级分层)
【OpenCV 完整例程】42. 图像的灰度变换(比特平面分层)
【OpenCV 完整例程】43. 图像的灰度变换(对数变换)
【OpenCV 完整例程】44. 图像的灰度变换(伽马变换)
【OpenCV 完整例程】45. 图像的灰度直方图
【OpenCV 完整例程】46. 直方图均衡化
【OpenCV 完整例程】47. 图像增强—直方图匹配
【OpenCV 完整例程】48. 图像增强—彩色直方图匹配
【OpenCV 完整例程】49. 图像增强—局部直方图处理
【OpenCV 完整例程】50. 图像增强—直方图统计量图像增强
【OpenCV 完整例程】51. 图像增强—直方图反向追踪
【OpenCV 完整例程】52. 图像的相关与卷积运算
【OpenCV 完整例程】53. Scipy 实现图像二维卷积
【OpenCV 完整例程】54. OpenCV 实现图像二维卷积
【OpenCV 完整例程】55. 可分离卷积核
【OpenCV 完整例程】56. 低通盒式滤波器
【OpenCV 完整例程】57. 低通高斯滤波器
【OpenCV 完整例程】58. 非线性滤波—中值滤波
【OpenCV 完整例程】59. 非线性滤波—双边滤波
【OpenCV 完整例程】60. 非线性滤波—联合双边滤波
【OpenCV 完整例程】61. 导向滤波(Guided filter)
【OpenCV 完整例程】62. 图像锐化——钝化掩蔽
【OpenCV 完整例程】63. 图像锐化——Laplacian 算子
【OpenCV 完整例程】64. 图像锐化——Sobel 算子
【OpenCV 完整例程】65. 图像锐化——Scharr 算子
【OpenCV 完整例程】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 完整例程】67. 空间域图像增强的综合应用
【OpenCV 完整例程】68. 空间域图像增强的综合应用
【OpenCV 完整例程】69. 连续非周期信号的傅立叶系数
【OpenCV 完整例程】70. 一维连续函数的傅里叶变换
【OpenCV 完整例程】71. 连续函数的取样
【OpenCV 完整例程】72. 一维离散傅里叶变换
【OpenCV 完整例程】73. 二维连续傅里叶变换
【OpenCV 完整例程】74. 图像的抗混叠
【OpenCV 完整例程】75. Numpy 实现图像傅里叶变换
【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换
【OpenCV 完整例程】77. OpenCV 实现快速傅里叶变换
【OpenCV 完整例程】78. 频率域图像滤波基础
【OpenCV 完整例程】79. 频率域图像滤波的基本步骤
【OpenCV 完整例程】80. 频率域图像滤波详细步骤
【OpenCV 完整例程】81. 频率域高斯低通滤波器
【OpenCV 完整例程】82. 频率域巴特沃斯低通滤波器
【OpenCV 完整例程】83. 频率域低通滤波:印刷文本字符修复
【OpenCV 完整例程】84. 由低通滤波器得到高通滤波器
【OpenCV 完整例程】85. 频率域高通滤波器的应用
【OpenCV 完整例程】86. 频率域滤波应用:指纹图像处理
【OpenCV 完整例程】87. 频率域钝化掩蔽
【OpenCV 完整例程】88. 频率域拉普拉斯高通滤波

标签:plt,例程,cv2,完整,OpenCV,88,图像,通滤波
来源: https://blog.csdn.net/youcans/article/details/122768067

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有