ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

论文推荐-使用 Noisy Student 进行自训练可以提高 ImageNet 分类的表现

2022-01-30 10:32:16  阅读:183  来源: 互联网

标签:训练 标记 标签 模型 噪声 Student 图像 ImageNet Noisy


教师学生模型、伪标签、半监督学习和图像分类

使用 Noisy Student 进行自训练改进 ImageNet 分类是一篇由 Google Research、Brain Team 和Carnegie Mellon大学发表在2020 CVPR的论文

Noisy Student在训练时使用相等或更大的学生模型和在学习期间添加噪声(Dropout, Stochastic Depth,和数据增强)扩展了自训练和蒸馏方法。

  • 一个 EfficientNet 模型首先作为教师模型在标记图像上进行训练,为 300M 未标记图像生成伪标签。
  • 然后将更大的 EfficientNet 作为学生模型并结合标记图像和伪标签图像进行训练。
  • 学生网络训练完成后变为教师再次训练下一个学生网络,并迭代重复此过程。

Noisy Student的训练过程

标记图像 {(x1, y1), (x2, y2), ..., (xn, yn)},未标记的图像 {~x1; ~x2, ..., ~xm} 第 1 步:学习教师模型 θ t*,它可以最大限度地减少标记图像上的交叉熵损失:

第 2 步:使用正常(即无噪声)教师模型为干净(即无失真)未标记图像生成伪标签:

经过测试软伪标签(每个类的概率而不是具体分类)效果更好。

第 3 步:学习一个相等或更大的学生模型 θ s*,它可以最大限度地减少标记图像和未标记图像上的交叉熵损失,并将噪声添加到学生模型中:

步骤 4:学生网络作为老师,从第2步开始进行迭代训练。

噪声

噪声由两种类型:输入噪声和模型噪声。

  • 对于输入噪声,使用 RandAugment [18] 进行数据增强。简而言之,RandAugment 包括增强:亮度、对比度和清晰度。
  • 对于模型噪声,使用 Dropout [76] 和 Stochastic Depth [37]。

噪声具有在标记和未标记数据的决策函数中强制执行不变性的重要好处。

数据增强是Noisy Student训练中的一种重要方法,因为它迫使学生确保图像增强版本之间的预测一致性。

教师模型通过干净的图像来生成高质量的伪标签,而学生则需要使用增强图像作为输入来重现这些标签。

当 Dropout 和 Stochastic Depth 函数用作噪声时,教师模型在推理时表现得像一个集成(当它生成伪标签时),而学生模型表现得像一个单一的模型。换句话说,学生被迫模仿更强大的集成模型。

 

完整文章

 

https://www.overfit.cn/post/894964adab5c4c14b5cba4564f12a93f

标签:训练,标记,标签,模型,噪声,Student,图像,ImageNet,Noisy
来源: https://www.cnblogs.com/deephub/p/15856446.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有