ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

u-boot分析与使用

2022-01-15 14:30:42  阅读:647  来源: 互联网

标签:分析 uboot flash boot 命令 地址 内核 使用


一、u-boot介绍

u-boot即通用的BootLoader,是遵循GPL条款的开放源代码项目。“通用”有两层含义:可以引导多种操作系统支持多种架构的CPU。他支持如下操作系统:Linux、VxWorks等,支持如下架构的CPU:PowerPC、MIPS、ARM、x86等。

u-boot有如下特性:
1.开放源码
2.支持多种嵌入式操作系统内核
3.支持多个处理器架构
4.丰富的设备驱动源码,如串口、以太网、sdram、flash等
5.支持NFS挂载,从flash中引导压缩或非压缩系统内核
6.上电自检功能

二、u-boot源码结构

u-boot版本情况:
网站:http://ftp.denx.de/pub/u-boot/

1、版本号变化:
2008年8月及以前按版本号命名:u-boot-1.3.4.tar.bz2(2008年8月更新)
2008年8月以后均按日期命名:u-boot-2011.06.tar.bz2(2011年6月更新)

2、目录结构变化:
u-boot目录结构主要经历过2次变化,u-boot版本第一次从u-boot-1.3.2开始发生变化,主要增加了api的内容;变化最大的是第二次,从2010.6版本开始。

u-boot-2010.03及以前版本
├── api 存放uboot提供的接口函数
├── board 根据不同开发板定制的代码,代码也不少
├── common 通用的代码,涵盖各个方面,已命令行处理为主
├── cpu 与体系结构相关的代码,uboot的重头戏
├── disk 磁盘分区相关代码
├── doc 文档,一堆README开头的文件
├── drivers 驱动,很丰富,每种类型的设备驱动占用一个子目录
├── examples 示例程序
├── fs 文件系统,支持嵌入式开发板常见的文件系统
├── include 头文件,已通用的头文件为主
├── lib_【arch】 与体系结构相关的通用库文件
├── nand_spl NAND存储器相关代码
├── net 网络相关代码,小型的协议栈
├── onenand_ipl
├── post 加电自检程序
└── tools 辅助程序,用于编译和检查uboot目标文件

从u-boot-2010.06版本开始把体系结构相关的内容合并,原先的cpu与lib_arch内容全部纳入arch中,并且其中增加inlcude文件夹;分离出通用库文件lib。

u-boot-2010.06及以后版本
├── api 存放uboot提供的接口函数
├── arch 与体系结构相关的代码,uboot的重头戏
├── board 根据不同开发板定制的代码,代码也不少
├── common 通用的代码,涵盖各个方面,已命令行处理为主
├── disk 磁盘分区相关代码
├── doc 文档,一堆README开头的文件
├── drivers 驱动,很丰富,每种类型的设备驱动占用一个子目录
├── examples 示例程序
├── fs 文件系统,支持嵌入式开发板常见的文件系统
├── include 头文件,已通用的头文件为主
├── lib 通用库文件
├── nand_spl NAND存储器相关代码
├── net 网络相关代码,小型的协议栈
├── onenand_ipl
├── post 加电自检程序
└── tools 辅助程序,用于编译和检查uboot目标文件

三、u-boot打补丁、编译、烧写

补丁主要是对源码进行修改的地方(patch),发布的时候只需要将补丁给别人即可。

以u-boot-1.1.6为例进行说明

1.对源码包进行解压缩
tar xjf u-boot-1.1.6.tar.bz2

2.打补丁
所谓的补丁其实就是我们在源码包上做了什么修改,把他单独列出来单独做成一个补丁,最后发布的时候把这个补丁给别人就行了

我们打开补丁文件可以看到:
在这里插入图片描述–表示原来的代码,++表示修改后的代码
因此进行打补丁操作:
patch -p1 < …/u-boot-1.1.6_jz2440.patch

3.配置
因为会有很多单板,所以需要进行配置,使用命令make 100ask24x0_config,至于为什么后面再说。

4.编译
直接执行make命令,编译好之后会生出一个u-boot.bin

将u-boot.bin烧写到开发板启动,倒数计时之前按下空格键进入uboot

这里说一下几个常用的命令:
help:查看有哪些命令
?命令:查看命令怎么用
print:查看环境变量
setenv:设置环境变量
saveenv:保存
reset:重启

嵌入式系统:pc上电-->BootLoader-->引导Linux内核-->挂载根文件系统-->应用程序
BootLoader有很多种,现在使用的是uboot,最终目的是启动内核

对于Windows。BIOS是从硬盘(C盘。D盘)上读入内核
对于Linux,启动内核是首先从flash上读出内核放到SDRAM上。然后才是启动内核
flash上的内容从哪里来?网络下载或者usb下载,因此uboot也要支持网卡或者usb,可以看到uboot源码目录下有一个driver目录
里面就是有支持nand,网卡,usb等驱动程序

因此uboot要实现的功能:
1.可以读flash。同样也可以加入写flsah功能,网卡,usb功能(为了开发方便)
2.要初始化SDRAM:还要初始化时钟,初始化串口等等…
3.启动内核

因此总结最后的uboot功能:
1.硬件(单板)相关的初始化
关看门狗,初始化时钟,初始化SDRAM
2.从flash上读出内核
3.启动内核
最后为了开发方便往往加入一些功能:如读写flash,网卡,usb,串口等

总的来说uboot就是一个单片机程序

四、uboot功能、结构,结合Makefile进行分析

为什么要先配置再make编译?
因为在uboot里面就有说明,也就是在README里面

1.分析配置过程 make 100ask24x0_config
可以看到: make 100ask24x0_config的时候相当于执行下面的命令
100ask24x06400_config : unconfig
@$(MKCONFIG) $(@:_config=) arm arm1176 100ask24x0 NULL s3c24xx

再搜索一下MKCONFIG
MKCONFIG := $(SRCTREE)/mkconfig
SRCTREE:source tree源文件目录下有一个mkconfig

%_config:: unconfig
@$(MKCONFIG) -A $(@:_config=)

也就是最终执行的命令是:
mkconfig 100ask24x0 arm arm1176 100ask24x0 NULL s3c24xx

然后分析mkconfig文件:
在Linux脚本里面。可以用 0 表 示 第 一 个 参 数 , 以 此 类 推 , 可 以 用 0表示第一个参数,以此类推,可以用 0表示第一个参数,以此类推,可以用#表示有几个参数,可以用echo进行打印操作,>表示新建一个文件,>>表示把内容追加进去

mkconfig 100ask24x0 arm arm1176 100ask24x0 NULL s3c24xx
    $0     $1       $2   $3       $4        $5     $6

然后会生成一个配置文件config.mk,显示config.mk内容为:
ARCH:arm
CPU:arm920t
BOARD:100ask24x0
SOC:s3c24x0

然后会生成一个单板相关的头文件config.h,里面的内容就是:
#include <configs/100ask24x0.h>

显然100ask24x0.h这就是我们的配置文件,在这里面我们要去配置支持什么东西,比如是否支持某些命令

总结配置具体做了什么:
1.确定board_name = $1
2.创建到平台/开发板相关头文件的链接 asm-arm
3.创建顶层Makefile包含的文件include/config.mk
4.创建开发板相关的头文件include/config.h

以上就是配置过程的分析

2.分析编译过程:直接执行make
继续分析Makefile
他会去包含前面生成的config.mk文件
指定交叉编译工具链:arm-linux-

然后看到:OBJS = cpu/$(cpu)/start.o cpu就是arm920t 即OBJS = cpu/arm920t/start.o

为了方便直接分析,不分析Makefile的话,可以直接执行make命令,在make命令的最后面就是相关的链接命令
可以看到链接的时候用到了链接脚本u-boot.lds以及代码段的基地址33F80000,然后准备start.o原材料以及库,最后输出u-boot

原材料怎么组织成一个u-boot? ---->分析链接脚本
基地址33F80000:uboot运行的时候应该位于33F80000这里,最开始运行的文件是 cpu/arm920t/start.s

分析uboot就是从start.s入手就可以知道uboot的流程是什么

综上:分析Makefile可以发现:
1.第一个文件:cpu/arm920t/start.s
2.链接地址:board/100ask24x0/u-boot.lds以及一个33F80000(512k)这个地址(-Ttest) 最终是在基地址(0)+0x33F80000这里开始运行

TEXT_BASE在board/100ask24x0/config.mk中定义:TEXT_BASE = 0x33F80000
uboot太大的话超过512k的话是可以修改TEXT_BASE

五、u-boot分析之源码阶段

1.start.s
(1)设置为svc管理模式 b reset
(2)关闭看门狗
(3)屏蔽所有的中断,也就是关中断
(4)初始化SDRAM
cpu相关的初始化 cpu_init_crit
条件是当前代码的地址(如果是nand的话就是0,如果是通过仿真器直接下载到SDRAM里面去的话就是他的链接地址33f80000)与TEXT_BASE(33f80000)不相等的话,也就是
说明SDRAM还没有初始化,则执行cpu_init_crit
在cpu_init_crit里面:
1.先清cache
2.关mmu
3.lowlevel_init 初始化存储控制器,经过这个初始化之后我们的内存才可以使用
(5)设置栈 调用C函数的话就必须设置栈,所谓设置栈也就是将sp指向某块内存
(6)初始化时钟
(7)重定位relocate 把代码从flash里面读到SDRAM里面的链接地址去
(8)清bss段 bss:未初始化的或者初始化为0的静态变量或者全局变量,既然都为0,那么就没必要保存在程序里面了,免得浪费空间
(9)调用c函数start_armboot 更复杂的功能就在这里实现

以上都是硬件初始化。针对的是2440,可能换了一款单板或者换了一款CPU就不相同,但是总体上还是一样的,功能相似。所有以上就是uboot的第一阶段
第二阶段就是从start_armboot实现

对于我们的uboot:最终目的是启动内核
1.从flash上读出内核
因此要满足flash读写功能
2.启动内核

env_relocate():环境变量初始化 uboot下可以使用print打印环境变量

bootcmd就是自动启动时执行的命令
bootdelay就是执行自动启动的等待秒数

环境变量从哪里来?
对于环境变量,可以是默认写死的,也可以是从flash上保存中读到
这样uboot启动的时候会先去flash上看看有没有可用的环境变量,如果有的话就使用flash上的环境变量,没有的话就使用默认的

start_armboot–>flash_init, nand_init -->env_relocate -->main_loop(放在一个死循环里面),这也就是为什么我们在uboot界面输入命令,然后解析,然后输出;然后再输入

在main_loop中有一个很重要的语句:
s = getenv(“bootcmd”)去获取环境变量; 可以使用print来查看bootcmd
bootcmd=nand read.jffs2 0x33007Fc0 kernel: bootm 0x33007Fc0

里面涉及到两条命令
1.从nand flash上面把内核读到0x33007Fc0这个内存里面来:nand read.jffs2 0x33007Fc0 kernel kernel是一个分区
2.启动的时候就从0x33007Fc0这里开始启动:bootm 0x33007Fc0

如果倒数计时到0的时候没按下空格就会执行run_command(s,0);意思就是去执行bootcmd命令,也就是启动内核
如果按下了空格,后面就会进入一个死循环,主要是uboot控制界面,用来解析读取用户按下的数据,会有一个去读串口信息的函数readline,然后运行run_command

因此不管是按下还是不按下,最终执行的函数都是run_command()
因此uboot的核心就是这些命令:run_command,分析这些命令的实现才可以知道内核的启动流程

六、u-boot分析之命令实现

程序根据输入的命令字符串(name)找到对应的函数(func)进行执行

uboot中肯定会有一个命令结构体{name,func},run_conmand根据名字在结构体(cmd_tbl_s)中进行查找匹配,匹配的话就会调用命令对应的函数

struct cmd_tbl_s {
	char		*name;		/* Command Name			*/名字
	int		maxargs;	/* maximum number of arguments	*/最大有多少个参数
	int		repeatable;	/* autorepeat allowed?		*/是否可重复:也就是再次回车是不是还能执行上一次的命令
					/* Implementation function	*/
	int		(*cmd)(struct cmd_tbl_s *, int, int, char *[]);处理函数
	char		*usage;		/* Usage message	(short)	*/短的帮助信息  比如执行help
#ifdef	CFG_LONGHELP
	char		*help;		/* Help  message	(long)	*/长的帮助信息  比如help某个命令
#endif
#ifdef CONFIG_AUTO_COMPLETE
	/* do auto completion on the arguments */
	int		(*complete)(int argc, char *argv[], char last_char, int maxv, char *cmdv[]);
#endif
};

argc = parse_line()提取参数解析命令
如:md.w 0
argv[0] = “md.w” 命令
argv[1] = “0” 参数

七、uboot启动内核

启动也就是怎么通过bootcmd的两条命令来读出内核,启动内核
两条命令如下:
(1)nand read.jffs2 0X30007FC0 kernel:从nand上读内核(从kernel分区读)到0X30007FC0这个地址
分区:
在pc上每一个硬盘前面都有一个分区表
但是对于嵌入式Linux来说,flash上没有分区表,但是为什么又会分为boot区,环境变量区(也就是uboot的那些参数),kernel区,根文件系统(root)区?
因为这是在源码里面写死的(在配置文件100ask24x0.h),注意关心的不是分区的名字,而是这些分区的起始地址和大小
#define MTDPARTS_DEFAULT “mtdparts=nandflash0:256k@0(bootloader),” \ 从0开始的256k是BootLoader
“128k(params),” \ 接下来的128K是环境变量
“2m(kernel),” \ 接下来的2M是kernel
“-(root)” 剩下的是root
可以在uboot下使用mtb命令来进行查看分区

至于说为什么用jffs2,因为这样可以使得后面的长度不需要页对齐

对于flash上存的内核,称为UImage,而UImage就是一个头部加上真正的内核
头部:

typedef struct image_header {
	uint32_t	ih_magic;	/* Image Header Magic Number	*/
	uint32_t	ih_hcrc;	/* Image Header CRC Checksum	*/
	uint32_t	ih_time;	/* Image Creation Timestamp	*/
	uint32_t	ih_size;	/* Image Data Size		*/
	uint32_t	ih_load;	/* Data	 Load  Address		*/表示加载地址,就是内核运行的时候要把他放在哪里
	uint32_t	ih_ep;		/* Entry Point Address		*/表示入口地址,就是内核的时候直接跳到这个地址执行就可以了
	uint32_t	ih_dcrc;	/* Image Data CRC Checksum	*/
	uint8_t		ih_os;		/* Operating System		*/
	uint8_t		ih_arch;	/* CPU architecture		*/
	uint8_t		ih_type;	/* Image Type			*/
	uint8_t		ih_comp;	/* Compression Type		*/
	uint8_t		ih_name[IH_NMLEN];	/* Image Name		*/
} image_header_t;

关心的是load和ep

(2)bootm 0X30007FC0:从0X30007FC0这个地址启动;对应do_bootm()这个函数,所做的工作:

(1)读出头部,移动内核到加载地址(合适的地方)
bootm会先去读出他的头部(头部为64字节),得到他的加载地址和入口地址。memmove (&header, (char *)addr, sizeof(image_header_t));
如果发现当前内核不是位于他的加载地址的话,就会把这个内核移动到这个加载地址。
最后跳到入口地址去执行。memmove ((void *) ntohl(hdr->ih_load), (uchar *)data, len); data就是内核真正所在的地址

(2)启动;即do_bootm_linux()函数,所做的工作:
1.uboot告诉内核一些启动参数------>设置启动参数
在某个地址(与内核约定好)按照某种格式保存数据,内核起来之后就去这个地址读取数据
这里的格式就是TAG,地址对于开发板来说是0X30000100
以下进行举例说明:
setup_start_tag (bd);
setup_memory_tags (bd);
setup_commandline_tag (bd, commandline);
setup_end_tag (bd);

char *commandline = getenv (“bootargs”);
对于bootargs:是传递给内核的启动参数,存放在commandline字符串中
print boorargs:根文件系统位于第4个flash分区,第一个应用程序(init)是谁,内核打印信息(console)从哪里打印出来

2.跳到入口地址启动内核:
theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep);头部会指向一个入口地址
theKernel (0, bd->bi_arch_number, bd->bi_boot_params);
第一个参数:0
第二个参数:机器ID 看支不支持这个单板
第三个参数:参数的起始地址,即0X30000100

输入boot命令实际上就是执行bootcmd的命令,启动内核

标签:分析,uboot,flash,boot,命令,地址,内核,使用
来源: https://blog.csdn.net/qq_51118175/article/details/122509265

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有