ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

计算机网络实验之Cisco Packet Tracer实验

2022-01-08 19:32:35  阅读:239  来源: 互联网

标签:Cisco 配置 192.168 实验 模式 Router config Tracer 路由器


Cisco Packet Tracer实验

构建LAN

1.直接连接两台 PC 构建 LAN
(1)将两台 PC 直接连接构成一个网络。注意:直接连接需使用交叉线。
在这里插入图片描述
(2)进行两台 PC 的基本网络配置,只需要配置 IP 地址即可,然后相互 ping 通即成功。
配置:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.用交换机构建 LAN
构建如下拓扑结构的局域网:

在这里插入图片描述
各PC的基本网络配置如下:

机器名 IP 子网掩码
PC0 192.168.1.1 255.255.255.0
PC1 192.168.1.2 255.255.255.0
PC2 192.168.2.1 255.255.255.0
PC3 192.168.2.2 255.255.255.0
问题
1.PC0 能否 ping 通 PC1、PC2、PC3 ?
答:PC0能ping通PC1,但不能ping通PC2、PC3。
2.PC3 能否 ping 通 PC0、PC1、PC2 ?为什么?
答:PC3能ping通PC2,但不能ping通PC1、PC0。
3.将 4 台 PC 的掩码都改为 255.255.0.0 ,它们相互能 ping 通吗?为什么?
答:相互之间能ping通。如果掩码为255.255.255.0,PC0、PC1和PC2、PC3不是同一局域网,他们之间不能互通。而掩码改为255.255.0.0,他们之间属于同一局域网下,可以互通。
4.使用二层交换机连接的网络需要配置网关吗?为什么?
答:需要。网关用于在2个网络间建立传输连接,使不同网络上的主机间可以建立起跨越多个网络的级联的、点对点的传输连接。

交换机接口地址列表

1.二层交换机是一种即插即用的多接口设备,它对于收到的帧有 3 种处理方式:广播、转发和丢弃(请弄清楚何时进行何种操作)。那么,要转发成功,则交换机中必须要有接口地址列表即 MAC 表,该表是交换机通过学习自动得到的!

2.仍然构建上图的拓扑结构,并配置各计算机的 IP 在同一个一个子网,使用工具栏中的放大镜点击某交换机如左边的 Switch3,选择 MAC Table,可以看到最初交换机的 MAC 表是空的,也即它不知道该怎样转发帧(那么它将如何处理?),用 PC0 访问(ping)PC1 后,再查看该交换机的 MAC 表,现在有相应的记录,请思考如何得来。随着网络通信的增加,各交换机都将生成自己完整的 MAC 表,此时交换机的交换速度就是最快的!
在这里插入图片描述
解析:当一个交换机收到一个数据帧的时候,会查看自己的mac表,如果mac表中没有数据帧的源mac和目的mac,则会将源mac加入mac表,并且广播这个数据帧。目的mac收到这个帧后返回一个确认帧,交换机把这个帧转发给源mac和记录目的mac。

生成树协议(Spanning Tree Protocol)

1.交换机在目的地址未知或接收到广播帧时是要进行广播的。如果交换机之间存在回路/环路,那么就会产生广播循环风暴,从而严重影响网络性能。
2.只使用交换机,构建如下拓扑:
在这里插入图片描述
这是初始时的状态。我们可以看到交换机之间有回路,这会造成广播帧循环传送即形成广播风暴,严重影响网络性能。
随后,交换机将自动通过生成树协议(STP)对多余的线路进行自动阻塞(Blocking),以形成一棵以 Switch4为根(具体哪个是根交换机有相关的策略)的具有唯一路径树即生成树!
经过一段时间,随着 STP 协议成功构建了生成树后,Switch3 的两个接口当前物理上是连接的,但逻辑上是不通的,处于Blocking状态(桔色)如下图所示:
在这里插入图片描述
在网络运行期间,假设某个时候 Switch1与 Switch3 之间的物理连接出现问题(将 Switch1 与 Switch3 的连线剪掉),则该生成树将自动发生变化。Switch3 上方先前 Blocking 的那个接口现在活动了(绿色),但下方那个接口仍处于 Blocking 状态(桔色)。如下图所示:
在这里插入图片描述
注意:
交换机的 STP 协议即生成树协议始终自动保证交换机之间不会出现回路,从而形成广播风暴。

路由器配置初步

我们模拟A大学和B大学两个学校的连接,构建如下拓扑:
在这里插入图片描述
添加广域网口:

在这里插入图片描述
在这里插入图片描述
去配置里
config→serial0/0→接口状态→开
在这里插入图片描述

说明一
A大学与B大学显然是两个不同的子网。在不同子网间通信需通过路由器。路由器的每个接口下至少是一个子网,图中我们简单的规划了 3 个子网:
(1)左边路由器是A大学的,其下使用交换机连接A大学的网络,分配网络号 192.168.1.0/24,该路由器接口也是A大学网络的网关,分配 IP 为 192.168.1.1
(2)右边路由器是B大学的,其下使用交换机连接B大学的网络,分配网络号 192.168.3.0/24,该路由器接口也是B大学网络的网关,分配 IP 为 192.168.3.1
(3)两个路由器之间使用广域网接口相连,也是一个子网,分配网络号 192.168.2.0/24

说明二
现实中,A大学和B大学的连接是远程的。该连接要么通过路由器的光纤接口,要么通过广域网接口即所谓的 serial 口(如拓扑图所示)进行,一般不会通过双绞线连接(为什么?)。
答:双绞线的最远传输距离为100米。
下面我们以通过路由器的广域网口连接为例来进行相关配置。请注意:我们选用的路由器默认没有广域网模块(名称为 WIC-1T 等),需要关闭路由器后添加,然后再开机启动。

说明三
在模拟的广域网连接中需注意 DCE 和 DTE 端(连线时线路上有提示,带一个时钟标志的是 DCE 端。有关 DCE 和 DTE 的概念请查阅相关资料。),在 DCE 端需配置时钟频率 64000

说明四
路由器有多种命令行配置模式,每种模式对应不同的提示符及相应的权限。
请留意在正确的模式下输入配置相关的命令。
User mode:用户模式
Privileged mode:特权模式
Global configuration mode:全局配置模式
Interface mode:接口配置模式
Subinterface mode:子接口配置模式

说明五
在现实中,对新的路由器,显然不能远程进行配置,我们必须在现场通过笔记本的串口与路由器的 console 接口连接并进行初次的配置(注意设置比特率为9600)后,才能通过网络远程进行配置。这也是上图左上画出笔记本连接的用意。
说明六
在路由器的 CLI 界面中,可看到路由器刚启动成功后,因为无任何配置,将会提示是否进行对话配置(Would you like to enter the initial configuration dialog?),因其步骤繁多,请选择 no
在这里插入图片描述
A大学路由器的初步配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#interface FastEthernet0/0
Router(config-if)#ip address 192.168.1.1 255.255.255.0
Router(config-if)#no shutdown
Router(config-if)#exit
Router(config)#line vty 0 4 //可支持0-4共5个终端同时登录
Router(config-line)#password xianlu // 远程登录密码
Router(config-line)#login
Router(config-line)#exit
Router(config)#enable password xianlu // 特权模式密码
Router(config)#^Z  // 退出

拓扑图中路由器各接口配置数据如下:
接口名 IP 子网掩码
A大学 Router0 以太网口 192.168.1.1 255.255.255.0
A大学 Router0 广域网口 192.168.2.1 255.255.255.0
B大学 Router1 以太网口 192.168.3.1 255.255.255.0
B大学 Router1 广域网口 192.168.2.2 255.255.255.0

拓扑图中各 PC 配置数据如下:
节点名 IP 子网掩码 网关
A大学 PC6 192.168.1.2 255.255.255.0 192.168.1.1
A大学 PC7 192.168.1.3 255.255.255.0 192.168.1.1
B大学 PC8 192.168.3.2 255.255.255.0 192.168.3.1
B大学 PC9 192.168.3.3 255.255.255.0 192.168.3.1

A大学路由器基本配置如下:
以太网口:

Router>enable   // 从普通模式进入特权模式
Router#configure terminal   // 进入全局配置模式
Router(config)#interface f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

广域网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.1 255.255.255.0   //配置该接口的 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

B大学路由器基本配置如下:
以太网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.3.1 255.255.255.0   // 配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

广域网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.2 255.255.255.0   //配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

路由器基本的配置完成。请按照上面 PC 配置表继续配置各个 PC 吧。
问题
现在交通大学内的各 PC 及网关相互能 ping 通,重庆大学也类似。但不能从交大的 PC ping 通重大的 PC,反之亦然,也即不能跨子网。为什么?
答:由图可知PC之间通信不能够跨越路由器,说明路由器还没有配置。

静态路由

静态路由是非自适应性路由协议,是由网络管理人员手动配置的,不能够根据网络拓扑的变化而改变。 因此,静态路由简单高效,适用于结构非常简单的网络。在当前这个简单的拓扑结构中我们可以使用静态路由,即直接告诉路由器到某网络该怎么走即可。在前述路由器基本配置成功的情况下使用以下命令进行静态路由协议的配置:
A大学路由器静态路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#ip route 192.168.3.0 255.255.255.0 192.168.2.2   // 告诉A大学路由器到 192.168.3.0 这个网络的下一跳是 192.168.2.2
Router(config)#exit   //退到特权模式
Router#show ip route    //查看路由表

B大学路由器静态路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.2.1   // 告诉B大学路由器到 192.168.1.0 这个网络的下一跳是 192.168.2.1
Router(config)#exit   //退到特权模式
Router#show ip route    //查看路由表

查看路由表你可看到标记为 S 的一条路由,S 表示 Static 。
在这里插入图片描述
至此,这些 PC 能全部相互 ping 通!

动态路由 RIP

动态路由协议采用自适应路由算法,能够根据网络拓扑的变化而重新计算机最佳路由。RIP 的全称是 Routing Information Protocol,是距离矢量路由的代表(目前虽然淘汰,但可作为我们学习的对象)。使用 RIP 协议只需要告诉路由器直接相连有哪些网络即可,然后 RIP 根据算法自动构建出路由表。因为我们模拟的网络非常简单,因此不能同时使用静态和动态路由,否则看不出效果,所以我们需要把刚才配置的静态路由先清除掉。
清除静态路由配置
直接关闭路由器电源。相当于没有保存任何配置,然后各接口再按照前面基本配置所述重新配置 IP 等参数(推荐此方法,可以再熟悉一下接口的配置命令);
使用 no 命令清除静态路由。在全局配置模式下,A大学路由器使用:no ip route 192.168.3.0 255.255.255.0 192.168.2.2,B大学路由器使用:no ip route 192.168.1.0 255.255.255.0 192.168.2.1 。相当于使用 no 命令把刚才配置的静态路由命令给取消。
或者直接清除

A大学路由器 RIP 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router rip   // 启用 RIP 路由协议,注意是 router 命令
Router(config-router)#network 192.168.1.0   // 网络 192.168.1.0 与我直连
Router(config-router)#network 192.168.2.0   // 网络 192.168.2.0 与我直连
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

B大学路由器 RIP 路由配置

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router rip   // 启用RIP路由协议,注意是 router 命令
Router(config-router)#network 192.168.3.0   // 网络 192.168.3.0 与我直连
Router(config-router)#network 192.168.2.0   // 网络 192.168.2.0 与我直连
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

查看路由表你可看到标记为 R 的一条路由,R 表示 RIP 。
至此,这些 PC 能全部相互 ping 通!

动态路由 OSPF

OSPF(Open Shortest Path First 开放式最短路径优先)是一个内部网关协议(Interior Gateway Protocol,简称 IGP), 用于在单一自治系统(Autonomous System,AS)内决策路由。OSPF 性能优于 RIP,是当前域内路由广泛使用的路由协议。同样的,我们需要把刚才配置的 RIP 路由先清除掉。

清除 RIP 路由配置:
直接关闭路由器电源。相当于没有保存任何配置,然后各接口再按照前面基本配置所述重新配置 IP 等参数
使用 no 命令清除 RIP 路由。在全局配置模式下,各路由器都使用:no router rip 命令进行清除。
或者手动删除

A大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1(可暂不理会进程号概念)
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.1.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 192.168.2.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.2.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

B大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1
Router(config-router)#network 192.168.3.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.3.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 192.168.2.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.2.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

查看路由表你可看到标记为 O 的一条路由,O 表示 OSPF 。
至此,这些 PC 能全部相互 ping 通!

基于端口的网络地址翻译 PAT

网络地址转换(NAT,Network Address Translation)被各个 Internet 服务商即 ISP 广泛应用于它们的网络中,也包括 WiFi 网络。 原因很简单,NAT 不仅完美地解决了 lP 地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机。

NAT 的实现方式一般有三种:
静态转换: Static NAT
动态转换: Dynamic NAT
端口多路复用: OverLoad

端口多路复用使用最多也最灵活。OverLoad 是指不仅改变发向 Internet 数据包的源 IP 地址,同时还改变其源端口,即进行了端口地址转换(PAT,Port Address Translation)。

采用端口多路复用方式,内部网络的所有主机均可共享一个合法外部 IP 地址实现对 Internet 的访问,从而可以最大限度地节约IP地址资源。 同时,又可隐藏网络内部的所有主机,有效避免来自 Internet 的攻击。因此,目前网络中应用最多的就是端口多路复用方式。

我们仍然使用A大学和B大学两个学校的拓扑进行 PAT 实验。我们需要保证两个学校的路由已经配置成功,无论使用静态路由还是动态路由,以下我们给出完整的配置过程:设定这两个学校的路由器使用 OSPF 协议,模拟A大学使用内部 IP 地址(192.168.1.0/24),模拟B大学使用外部 IP 地址(8.8.8.0/24),两个路由器之间使用外部 IP 地址(202.202.240.0/24),在A大学的出口位置即广域网口实施 PAT。

拓扑图中各 PC 配置数据如下:
节点名 IP 子网掩码 网关
A大学 PC0 192.168.1.2 255.255.255.0 192.168.1.1
A大学 PC1 192.168.1.3 255.255.255.0 192.168.1.1
B大学 PC2 8.8.8.2 255.255.255.0 8.8.8.1
B大学 PC3 8.8.8.3 255.255.255.0 8.8.8.1

A大学路由器接口配置如下:
以太网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口

广域网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 202.202.240.1 255.255.255.0   //配置 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口

B大学路由器接口配置如下:
以太网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 8.8.8.1 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口


广域网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 202.202.240.2 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口


A大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1(可暂不理会进程号概念)
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0   // 自治域0中的属于192.168.1.0/24网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 202.202.240.0 0.0.0.255 area 0   // 自治域0中的属于202.202.240.0/24网络的所有主机(反向掩码)参与 OSPF

B大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1
Router(config-router)#network 202.202.240.0 0.0.0.255 area 0   // 自治域0中的属于202.202.240.0/24网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 8.8.8.0 0.0.0.255 area 0   // 自治域0中的属于8.8.8.0/24网络的所


此时,这些 PC 能全部相互 ping 通!如在A大学内部使用 PC0(192.168.1.2)来 ping B大学的PC2(8.8.8.2)应该成功。

下面我们将B大学的路由器看着 Internet 中的骨干路由器,那么这些路由器将不会转发内部/私有 IP 地址的包(直接丢弃)。我们通过在B大学路由器上实施访问控制 ACL ,即丢弃来自A大学(私有 IP 地址)的包来模拟这个丢包的过程。

B大学路由器丢包的配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#access-list 1 deny 192.168.1.0 0.0.0.255  // 创建 ACL 1,丢弃/不转发来自 192.168.1.0/24 网络的所有包
Router(config)#access-list 1 permit any  // 添加 ACL 1 的规则,转发其它所有网络的包
Router(config)#int s0/0   // 配置广域网口
Router(config-if)#ip access-group 1 in  // 在广域网口上对进来的包实施 ACL 1 中的规则,实际就是广域网口如果收到来自 192.168.1.0/24 IP的包即丢弃

此时,再使用A大学内部的 PC0(192.168.1.2)来 ping B大学的 PC2(8.8.8.2)就不成功了,会显示目的主机不可到达(Destination host unreachable)信息。

下面,我们就开始实施 PAT。即:我们将会在A大学路由器的出口上将内部/私有 IP 地址转换为外部/公开 IP,从而包的源 IP 发生了改变,就不会被B大学路由器丢弃,因此网络连通。
A大学路由器 PAT 配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255  // 创建 ACL 1,允许来自 192.168.1.0/24 网络的所有包
Router(config)#ip nat inside source list 1 interface s0/0 overload  // 来自于 ACL 中的 IP 将在广域网口实施 PAT
Router(config)#int f0/0   // 配置以太网口
Router(config-if)#ip nat inside   // 配置以太网口为 PAT 的内部
Router(config)#int s0/0   // 配置广域网口
Router(config-if)#ip nat outside   // 配置广域网口为 PAT 的外部


虚拟局域网 VLAN

在实际网络中,你可看到路由器一般位于网络的边界,而内部几乎全部使用交换机连接。前面我们分析过,交换机连接的是同一个子网! 显然,在这样一个大型规模的子网中进行广播甚至产生广播风暴将严重影响网络性能甚至瘫痪.另外我们也已经知道,其实学校是划分了 N 多个子网的,那么这些交换机连接的就绝不是一个子网!这样矛盾的事情该如何解释呢?我们实际上使用了支持 VLAN 的交换机!而前述的交换机只是普通的 2 层交换机(或者我们把它当作 2 层交换机在使用。
VLAN(Virtual Local Area Network)即虚拟局域网。通过划分 VLAN,我们可以把一个物理网络划分为多个逻辑网段即多个子网。划分 VLAN 后可以杜绝网络广播风暴,增强网络的安全性,便于进行统一管理等。
在 CPT 中构建如下图所示拓扑:
在这里插入图片描述
Cisco 2960 交换机是支持 VLAN 的交换机,共有 24 个 100M 和 2 个 1000M 以太网口。默认所有的接口都在 VLAN 1 中,故此时连接上来的计算机都处于同一 VLAN,可以进行通信。
下面我们就该交换机的 24 个 100M 接口分为 3 个部分,划分到 3 个不同的 VLAN 中,id 号分别设为 10、20、30,且设置别名(computer、communication、electronic)以利于区分和管理。
交换机 VLAN 配置:

Switch>en
Switch#conf t
Switch(config)#vlan 10    // 创建 id 为 10 的 VLAN(缺省的,交换机所有接口都属于VLAN 1,不能使用)
Switch(config-vlan)#name computer    // 设置 VLAN 的别名
Switch(config-vlan)#exit
Switch(config)#int vlan 10    // 该 VLAN 为一个子网,设置其 IP,作为该子网网关
Switch(config-if)#ip address 192.168.0.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#vlan 20    // 创建 id 为 20 的 VLAN
Switch(config-vlan)#name communication    //设置别名
Switch(config-vlan)#exit
Switch(config)#int vlan 20
Switch(config-if)#ip addr 192.168.1.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#vlan 30    // 创建 id 为 20 的 VLAN
Switch(config-vlan)#name electronic    // 设置别名
Switch(config-vlan)#exit
Switch(config)#int vlan 30
Switch(config-if)#ip add 192.168.2.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#int range f0/1-8    // 成组配置接口(1-8)
Switch(config-if-range)#switchport mode access    // 设置为存取模式
Switch(config-if-range)#switchport access vlan 10    // 划归到 VLAN 10 中
Switch(config-if-range)#exit
Switch(config)#int range f0/9-16
Switch(config-if-range)#switchport mode access
Switch(config-if-range)#switchport access vlan 20
Switch(config-if-range)#exit
Switch(config)#int range f0/17-24
Switch(config-if-range)#switchport mode access
Switch(config-if-range)#switchport access vlan 30
Switch(config-if-range)#^Z
Switch#show vlan // 查看 VLAN 的划分情况


至此,在该交换机上我们就划分了 3 个 VLAN(不包括缺省的 VLAN 1)。
在这里插入图片描述
各 VLAN 下 PC 的网络配置及连接的交换机接口如下表:
在这里插入图片描述

此时可以使用 ping 命令进行测试,你会发现只有在同一 VLAN 中的 PC 才能通信,且广播也局限于该 VLAN。
(1)PC0 ping PC4,不通
在这里插入图片描述
(2)PC0 ping PC6,通
在这里插入图片描述

思考
分析一下当前为何不同 VLAN 中的 PC 不能通信?网关在此起什么作用?我们的网关又在何处?如何发起广播测试?
答:交换机的所有口子在同一vlan下,vlan划分相当于把交换机口子划分,不同vlan下的口子不能通信。当划分了多VLAN,并配置了相关VLAN接口的IP地址,设备有上联时,各VLAN要想出去就需要配置网关。网关主要配合TELNET命令使用,要TELNET的PC必须与交换机的网关设置一样才能连接上。

虚拟局域网管理 VTP

前一个实验我们在交换机上进行了 VLAN 的规划和划分。但在实际应用中,我们绝不允许在这些支持VLAN的交换机上进行随意的 VLAN 划分,如此将造成管理混乱!VLAN的划分必须得到统一的规划和管理,这就需要 VTP 协议。

VLAN 间的通信

DHCP、DNS及Web服务器简单配置

WLAN初步配置

标签:Cisco,配置,192.168,实验,模式,Router,config,Tracer,路由器
来源: https://blog.csdn.net/qq_45783772/article/details/122384508

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有