ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

恒源云_[文本分类] 文本数据增强1(论文笔记)

2021-12-21 15:02:03  阅读:387  来源: 互联网

标签:lang 恒源 batch 笔记 tokens token words np 文本


文章来源 | 恒源云社区(恒源云,专注 AI 行业的共享算力平台)

原文地址 | 文本数据增强

原文作者 | 角灰


最近在做新闻标题分类,找了篇数据增强的文章学习学习:
一篇就够!数据增强方法综述
本文实现了EDA(简单数据增强)和回译:

一. EDA

1.1 随机替换

import random
import jieba
import numpy as np
import paddle
from paddlenlp.embeddings import TokenEmbedding
# 从词向量中按余弦相似度找与某个词的topk近义词
def get_similar_tokens_raw(query_token, k, token_embedding):
    W = np.asarray(token_embedding.weight.numpy())
    x = np.asarray(token_embedding.search(query_token).reshape(-1))
    cos = np.dot(W, x) / np.sqrt(np.sum(W * W, axis=1) * np.sum(x * x) + 1e-9)
    flat = cos.flatten()
    # argpartition在k个位置放第k大的索引,左边比他小,右边比他大,复杂度仅o(n)
    # 取-k则在-k和他右边的为topk,对他们再排次序就好了
    indices = np.argpartition(flat, -k)[-k:] 
    indices = indices[np.argsort(-flat[indices])] # 取负从大到小排
    return token_embedding.vocab.to_tokens(indices)
# 随机替换
def random_replace(words,token_embedding,prob=0.1,max_change=3):
    change_num=0
    for idx in range(len(words)):
        prob_i=prob*(len(words[idx])-0.5) # -0.5使得长度1的词概率乘2,不易选中
        if random.uniform(0,1)<prob_i: # 词越长,越容易被替换
            sim_words=get_similar_tokens_raw(words[idx],k=5,token_embedding=token_embedding)
            words[idx]=random.choice(sim_words)
            change_num+=1
        if change_num>=max_change:
            break
    return words

由于get_similar_tokens_raw一次只能取一个词的近义词较慢,于是改成了一次取多个词的近义词,效果如下:

# 查询多个词的topk近义词
def get_similar_tokens_multi(query_tokens, k, token_embedding):
    n_tokens=len(query_tokens)
    W = paddle.to_tensor(token_embedding.weight.detach(),dtype='float16')
    q_idx=token_embedding.search(query_tokens)
    x = paddle.to_tensor(q_idx,dtype='float16').transpose((1,0))
    cos = paddle.matmul(W, x) / paddle.sqrt(paddle.sum(W * W, axis=1,keepdim=True) * paddle.sum(x * x,keepdim=True) + 1e-9)

    def sort_row_by_idx(input, indices):
        assert input.shape == indices.shape
        row, col = input.shape
        indices = indices * col + np.arange(0, col)
        indices = indices.reshape(-1)
        input = input.reshape(-1)[indices].reshape(row, -1)
        return input

    part_indices = np.argpartition(cos.numpy(), -k, axis=0)
    out = sort_row_by_idx(cos.numpy(), part_indices)[-k:, :]
    new_idx = np.argsort(-out, axis=0)
    # 用新的索引对旧的part的索引排序
    indices = sort_row_by_idx(part_indices[-k:, :], new_idx).reshape(-1)
    sim_tokens=token_embedding.vocab.to_tokens(indices)
    sim_tokens=np.array(sim_tokens).reshape(k,n_tokens)
    if k>=2:sim_tokens=sim_tokens[:-1,:]
    return sim_tokens.transpose()
# 相应的随机替换(此函数会多返回个近义词列表,供随机插入使用)
def random_replace(words,token_embedding,prob=0.1,max_change=3):
    words=np.array(words)
    probs=np.random.uniform(0,1,(len(words),))
    words_len=np.array([len(word) for word in words])-0.5 # 惩罚1的
    probs=probs/words_len
    mask=probs<prob
    if sum(mask)>1:
        replace_words=words[mask].tolist()
        sim_words=get_similar_tokens_multi(query_tokens=replace_words,k=5,token_embedding=token_embedding)
        choosed=[]
        for row in sim_words:
            choosed.append(np.random.choice(row))
        words[mask]=np.array(choosed)
        return words.tolist(),sim_words.flatten().tolist()
    return words.tolist(),[]

if __name__ == '__main__':
    token_embedding=TokenEmbedding(embedding_name="w2v.baidu_encyclopedia.target.word-word.dim300")
    # 近义词查找
    words=['苹果','美国','国王','总统','台风','雷电','奥特曼']
    sim_words=get_similar_tokens_multi(query_tokens=words,k=5,token_embedding=token_embedding)
    print('raw words:',words)
    print('sim_words:',sim_words)
1.2 随机插入

随机在语句中插入n个词 (从随机替换返回的近义词列表sim_words采样,如果sim_words=None,则从原句中随机采样)

def random_insertion(words,sim_words=None,n=3):
    new_words = words.copy()
    for _ in range(n):
        add_word(new_words,sim_words)
    return new_words

def add_word(new_words,sim_words=None):
    random_synonym = random.choice(sim_words) if sim_words else random.choice(new_words)
    random_idx = random.randint(0, len(new_words) - 1)
    new_words.insert(random_idx, random_synonym)  # 随机插入
1.3 随机删除

对句子中每个词依概率p随机删除,此处按词长度加权,越长越不易被删除,代码如下:

def random_deletion(words,prob=0.1):
    probs=np.random.uniform(0,1,(len(words),))
    words_len=np.array([len(word) for word in words])
    # 对长词加大权重,防止被删除重要词
    probs=probs*words_len
    mask=probs>prob
    return np.array(words)[mask].tolist()
1.4 随机置换临近词

人在读阅句子时,往往乱打顺序也能理句解意,不信您回过去再读一遍哈哈,代码如下:

# 先获取词索引,再对某个词添加个噪声noise∈[0,n],n(window_size)一般取3,然后
# 重新排序后就能达到目的了
def random_permute(words,window_size):
    noise=np.random.uniform(0,window_size,size=(len(words),))
    idx=np.arange(0,len(words))
    new_idx=np.argsort(noise+idx)
    return np.array(words)[new_idx].tolist()

二. 回译

回译是机器翻译里常用的对单语语料进行增强方法:对目标端单语语料t,利用反向翻译模型(tgt2src)生成源端的伪数据s’,从而让正向的src2tgt翻译模型使用伪平行语料(s’,t)继续训练。
本文使用预训练的mbart50(50种语言)进行回译,可以对原始语料zh,进行如下方向翻译:
中->法->xxxx->英->中,简单起见本文就进行中英中回译:

回译示例:

import torch
from transformers import MBartForConditionalGeneration,MBart50TokenizerFast
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
model.eval()

batch_sentences=['网易第三季度业绩低于分析师预期',
                 '巴萨1年前地狱重现这次却是天堂 再赴魔鬼客场必翻盘',
                 '美国称支持向朝鲜提供紧急人道主义援助',
                 '蔡少芬要补交税款几十万 圣诞节拼命赚外快(图)']
print('input:','\n'.join(batch_sentences))
# 中->英
tokenizer.src_lang='zh_CN' # 设置输入为中文
batch_tokenized = tokenizer.batch_encode_plus(batch_sentences, add_special_tokens=True,padding=True, pad_to_max_length=True)
input_dict = {'input_ids':torch.LongTensor(batch_tokenized['input_ids']).to(device),
              "attention_mask":torch.LongTensor(batch_tokenized['attention_mask']).to(device)}

batch_tokens=model.generate(**input_dict,forced_bos_token_id=tokenizer.lang_code_to_id['en_XX']) # 输出为英文
en_sent=tokenizer.batch_decode(batch_tokens, skip_special_tokens=True)
print('en:','\n'.join(en_sent))

# 英->中
tokenizer.src_lang='en_XX' # 设置输入为英文
batch_tokenized = tokenizer.batch_encode_plus(en_sent, add_special_tokens=True,padding=True, pad_to_max_length=True)
input_dict = {'input_ids':torch.LongTensor(batch_tokenized['input_ids']).to(device),
              "attention_mask":torch.LongTensor(batch_tokenized['attention_mask']).to(device)}

batch_tokens=model.generate(**input_dict,forced_bos_token_id=tokenizer.lang_code_to_id['zh_CN']) # 输出为中文
zh_sent=tokenizer.batch_decode(batch_tokens, skip_special_tokens=True)
print('zh:','\n'.join(zh_sent))
'''
mbart50覆盖如下语言:
Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI
'''
# 离线回译增强,将文本文件按行回译,
import torch
from functools import partial
from transformers import MBartForConditionalGeneration,MBart50TokenizerFast
from tqdm import tqdm

def get_data_iterator(input_path):
    with open(input_path, 'r', encoding="utf-8") as f:
        for line in f.readlines():
            line=line.strip()
            yield line

# 迭代器: 生成一个batch的数据
def get_batch_iterator(data_path, batch_size=32,drop_last=False):
    keras_bert_iter = get_data_iterator(data_path)
    continue_iterator = True
    while True:
        batch_data = []
        for _ in range(batch_size):
            try:
                data = next(keras_bert_iter)
                batch_data.append(data)
            except StopIteration:
                continue_iterator = False
                break

        if continue_iterator:# 刚好一个batch
            yield batch_data
        else: # 不足一batch
            if not drop_last:
                yield batch_data
            return StopIteration

@torch.no_grad()
def batch_translation(batch_sentences,model,tokenizer,src_lang,tgt_lang,max_len=128):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    model.eval()
    tokenizer.src_lang=src_lang
    # token2id
    encoded_inputs=tokenizer.batch_encode_plus(batch_sentences, add_special_tokens=True,
                                                 padding=True, pad_to_max_length=True)
#                                 max_length=max_len, pad_to_max_length=True)
    # list->tensor
    encoded_inputs['input_ids']=torch.LongTensor(encoded_inputs['input_ids']).to(device)
    encoded_inputs['attention_mask']=torch.LongTensor(encoded_inputs['attention_mask']).to(device)
    # generate
    batch_tokens = model.generate(**encoded_inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])
    # decode
    tgt_sentences = tokenizer.batch_decode(batch_tokens, skip_special_tokens=True)
    return tgt_sentences

def translate_file(src_path,tgt_path,src_lang,tgt_lang,batch_size=32,max_len=128):
    # data
    batch_iter=get_batch_iterator(src_path,batch_size=batch_size)
    # model
    model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
    tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
    src2tgt_fn = partial(batch_translation, model=model, tokenizer=tokenizer,
                         src_lang=src_lang, tgt_lang=tgt_lang,max_len=None)
    result=[]
    i=0
    for batch_sentences in tqdm(batch_iter):
        tgt_sentences = src2tgt_fn(batch_sentences)
        result.extend(tgt_sentences)
        if i%100==0:
            print(f'src:{batch_sentences[0]}==>tgt:{tgt_sentences[0]}')
        i+=1

    # write 2 file
    with open(tgt_path,'w',encoding='utf-8') as f:
        f.write('\n'.join(result))
        print(f'write 2 {tgt_path} success.')

if __name__ == '__main__':
    src_path='train.txt'
    mid_path='train.en'
    tgt_path='train_back.txt'
    # translate zh to en
    translate_file(src_path, mid_path, src_lang='zh_CN', tgt_lang='en_XX', batch_size=16)
    # translate en to zh
    translate_file(mid_path, tgt_path, src_lang='en_XX', tgt_lang='zh_CN', batch_size=16)

总结:

数据增强作用有限,接下来准备在相关任务数据上继续预训练。

参考:

1.一篇就够!数据增强方法综述
2.回译
3.mbart50
4.机器翻译:基础和模型

标签:lang,恒源,batch,笔记,tokens,token,words,np,文本
来源: https://blog.csdn.net/weixin_53977063/article/details/122061184

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有