ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

「 学习笔记 」二项式定理与组合恒等式

2021-11-17 22:33:00  阅读:181  来源: 互联网

标签:aligned dbinom limits dfrac sum 笔记 times 恒等式 二项式


二项式定理与组合恒等式

前置知识

\[\dbinom {n} {k} = \mathrm{C} _ n ^ k = \dfrac {n!} {(n - k)! \times k!} \]

二项式定理

二项式定理:设 \(n\) 是正整数,对于一切 \(x\) 和 \(y\)

\[{(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \]

常用形式

\[{(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k \]

等价形式

\[\begin{aligned} {(x + y)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {n - k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {n - k} x ^ {n - k} y ^k \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {n - k} y ^k \\ \end{aligned} \]

证明 1 ( 组合意义 / 组合分析 / 算二次 )

\[{(x + y)} ^ n = (x + y) \times (x + y) \times \cdots \times (x + y) \]

对于每一项 \(x ^ k y ^ {n - k}\),其含义就是在 \(n\) 个 \((x + y)\) 中选择 \(k\) 个 \(x\)、\(n - k\) 个 \(y\),故有 \(\dbinom {n} {k}\) 中选法,即有 \(\dbinom {n} {k}\) 个 \(x ^ k y ^ {n - k}\)

证毕

证明 2 ( 数学归纳法 )

当 \(n = 1\) 时,公式显然成立
假设公式对于正整数 \(n\) 成立,即证明公式对于 \(n + 1\) 也成立
即证

\[{(x + y)} ^ {n + 1} = \sum \limits _ {k = 0} ^ {n + 1} \dbinom {n} {k} x ^ k y ^ {n + 1 - k} \]

  • 因为公式对于 \(n\) 成立,故有

\[\begin{aligned} {(x + y)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ {(x + y)} ^ {n + 1} & = (x + y) \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = x \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} + y \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {k + 1} y ^{n - k} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {k + 1} y ^{(n + 1) - (k + 1)} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k + 1 = 1} ^ {n + 1} \dbinom {n} {(k + 1) - 1} x ^ {k + 1} y ^{(n + 1) - (k + 1)} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 1} ^ {n + 1} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + x ^ {n + 1} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + y ^ {n + 1} \\ & = \dbinom {n + 1} {0} x ^ {n + 1} + \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} y ^ {n + 1} \\ \end{aligned} \]

由 \(\mathrm{Pascal}\) 公式 \(\dbinom {n + 1} {k} = \dbinom {n} {k - 1} + \dbinom {n} {k}\)(后面会证明),就可以把 \(k\) 相等的项合并了

\[\begin{aligned} {(x + y)} ^ {n + 1} & = \dbinom {n + 1} {0} x ^ {n + 1} + \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} y ^ {n + 1} \\ & = \dbinom {n + 1} {0} x ^ {n + 1} y ^ 0 + \sum \limits _ {k = 1} ^ {n} \dbinom {n + 1} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} x ^ 0 y ^ {n + 1} \\ & = \sum \limits _ {k = 0} ^ {n + 1} \dbinom {n + 1} {k} x ^ k y ^{n + 1 - k} \\ \end{aligned} \]

证毕

组合恒等式

公式 1

\[\dbinom {n} {k} = \dbinom {n} {n - k} \]

证明 ( 组合意义 )

\(n\) 个小球选择 \(k\) 个留下,等价于选择 \(n - k\) 个不留下

证毕

公式 2

\[\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1} \]

证明 ( 公式法 )

\[\begin{aligned} \dbinom {n} {k} & = \dfrac {n!} {(n - k)! \times k!} \\ & = \dfrac {n} {k} \times \dfrac {(n - 1)!} {(n - k)! \times k!} \\ & = \dfrac {n} {k} \times \dfrac {(n - 1)!} {[(n - 1) - (k - 1)]! \times k!} \\ & = \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ \end{aligned} \]

证毕

公式 3 ( Pascal 公式 )

\[\dbinom {n} {k} = \dbinom {n - 1} {k} + \dbinom {n - 1} {k - 1} \]

证明 ( 组合意义 )

\(n\) 个小球中选择 \(k\) 个,等价于 ( 不选最后一个,前 \(n - 1\) 个中选择 \(k\) 个 ) 和 ( 选最后一个,前 \(n - 1\) 个中选择 \(k - 1\) 个 ) 的并集

公式 4

\[\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n \]

证明 ( 公式法 )

由二项式定理得 \({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\),令 \(x = y = 1\),则等式变为

\[\begin{aligned} {(1 + 1)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \times 1 ^ k \times 1 ^{n - k} \\ 2 ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \\ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} & = 2 ^ n \\ \end{aligned} \]

证毕

公式 5

\[\sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} = 0 \]

证明 ( 公式法 )

由二项式定理得 \({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\),令 \(x = -1\)、\(y = 1\),则等式变为

\[\begin{aligned} {[(-1) + 1]} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \times {(-1)} ^ k \times 1 ^{n - k} \\ 0 ^ n & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} \\ \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} & = 0 \\ \end{aligned} \]

证毕

公式 6 ( 变下项求和 )

\[\sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} = n 2 ^ {n - 1} \]

证明 1 ( 组合意义 )

  • 公式含义:选择 \(n\) 个小球的所有选法中每个小球出现的次数和
  • 右式含义:\(n\) 个小球,每个小球被选择的次数是 \(2 ^ {n - 1}\)
  • 左式含义:对于所有选法中选择 \(k\) 个小球情况,其对答案的贡献是 \(k\),共有 \(\dbinom {n} {k}\) 种选法

显然,三种含义等价

证毕

证明 2 ( 公式法 )

公式 2 \(\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1}\) 得:

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} & = 0 \dbinom {n} {k} + \sum \limits _ {k = 1} ^ {n} k \times \dbinom {n} {k} \\ & = 0 + \sum \limits _ {k = 1} ^ {n} k \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} n \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ \end{aligned} \]

公式 4 \(\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n\) 得 \(\sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} = 2 ^ {n - 1}\),故

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} & = n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ & = n 2 ^ {n - 1} \\ \end{aligned} \]

证毕

公式 7

\[\sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} = n (n + 1) 2 ^ {n - 2} \]

证明 1 ( 组合意义 )

\[\begin {aligned} n (n + 1) 2 ^ {n - 2} & = n (n - 1) 2 ^ {n - 2} + n \times 2 \times 2 ^ {n - 2} \\ & = n (n - 1) 2 ^ {n - 2} + n \times 2 ^ {n - 1} \end {aligned} \]

  • 左式含义:有 \(n\) 个不同的数,对于选择 \(k\) 个不同的数的情况,可以组成 \(k ^ 2\) 种有序数对,每种有序数对 \((a, b)\) 对答案的贡献为 \(1\),一起对答案的贡献就是 \(k ^ 2\),选择 \(k\) 个不同的数有 \(\dbinom {n} {k}\) 种选法
  • 右式含义:考虑每种有序数对 \((a, b)\) 对答案的贡献;若 \(a \neq b\),对于其它 \(n - 2\) 个数的每种选法中,有 \(1\) 的贡献,有 \(2 ^ {n - 2}\) 种选法;若 \(a = b\),对于其它 \(n - 2\) 个数的每种选法中,有 \(1\) 的贡献,有 \(2 ^ {n - 1}\) 种选法

右式含义中的两种情况的并集等于左式含义中的情况,故两种含义等价

证毕

证明 2 ( 公式法 )

公式 2 \(\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1}\) 得:

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} & = 0 + \sum \limits _ {k = 1} ^ {n} k ^ 2 \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} k ^ 2 \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} k \times n \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 1} ^ {n} k \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} (k + 1) \dbinom {n - 1} {k} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} + n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ \end{aligned} \]

公式 6 \(\sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} = n 2 ^ {n - 1}\) 得:\(\sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} = (n - 1) 2 ^ {n - 2}\)
公式 4 \(\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n\) 得:\(\sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} = 2 ^ {n - 1}\)

故原式可化为:

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} & = n \sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} + n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ & = n (n - 1) 2 ^ {n - 2} + n 2 ^ {n - 1} \\ & = n (n - 1) 2 ^ {n - 2} + n \times 2 \times 2 ^ {n - 2} \\ & = n (n + 1) 2 ^ {n - 2} \\ \end{aligned} \]

证毕

公式 8 ( 变上项求和 )

\[\sum \limits _ {l = 0} ^ n \dbinom {l} {k} = \dbinom {n + 1} {k + 1} n, k \in N \]

证明 ( 组合意义 )

在 \(n + 1\) 个小球中选择 \(k + 1\) 个
对于所有选法中,考虑选择的最后一个小球的位置为 \(l + 1(0 \leq l \leq n)\) 时对答案的贡献,就是在前 \(l\) 个小球中选择 \(k\) 的方案数
因此,对于所有的 \(l\) 属于的集合的并集,就等于在 \(n + 1\) 个小球中选择 \(k + 1\) 个的集合

证毕

公式 9

\[\dbinom {n} {r} \dbinom {r} {k} = \dbinom {n} {k} \dbinom {n - k} {r - k} \]

证明 ( 组合意义 )

把 \(n\) 个球分成 \(3\) 堆,使得第 \(1\) 堆有 \(k\) 个球、第 \(2\) 堆有 \(r - k\) 个球、第 \(3\) 堆有 \(n - r\) 个球 的方案数

  • 左式含义:先从这 \(n\) 个球中选出 \(r\) 个球,把剩下的 \(n - r\) 个分到第 \(3\) 堆;再从这 \(r\) 个中选择 \(k\) 个分到第 \(1\) 堆,剩下的 \(r - k\) 给分到第 \(2\) 堆
  • 右式含义:先从这 \(n\) 个球中选出 \(k\) 个球分到第 \(1\) 堆;再从剩下的 \(n - k\) 个中选择 \(r - k\) 个分到第 \(2\) 堆,剩下的 \(n - r\) 给分到第 \(3\) 堆

显然,两种含义不会重复,并且两种含义等价

证毕

公式 10

\[\sum \limits _ {k = 0} ^ {r} \dbinom {m} {k} \dbinom {n} {r - k} = \dbinom {m + n} {r} \]

证明 ( 组合意义 )

  • 右式含义:从 \(m + n\) 个球中选出 \(r\) 个球
  • 左式含义:从前 \(m\) 个球中选出 \(k\) 个球和从后 \(n\) 个球中选出 \(r - k\) 个球的并集的并集(第一个并集对于每个 \(k\) 的方案数,第二个并集对于 \(\sum\))

显然,两种含义等价

证毕

公式 11

\[\sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} = \dbinom {m + n} {m} \]

证明 ( 公式法 )

\[\begin{aligned} \sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} \\ \end{aligned} \]

公式 10 \(\sum \limits _ {k = 0} ^ {r} \dbinom {m} {k} \dbinom {n} {r - k} = \dbinom {m + n} {r}\) 得 \(\sum \limits _ {k = 0} ^ {r} \dbinom {m} {r - k} \dbinom {n} {k} = \dbinom {n + m} {r}\),令 \(r = m\) 得:\(\sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} = \dbinom {m + n} {m}\),故

\[\begin{aligned} \sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} \\ & = \dbinom {m + n} {m} \\ \end{aligned} \]

证毕

课后习题

习题 1

\({(3x - 2y)} ^ {18}\) 的展开式中,\(x ^ 5 y ^ {13}\) 的系数是多少?\(x ^ 8 y ^ 9\) 的系数是多少?

答案

解:
\(x ^ 5 y ^ {13}\) 的系数为 \(\dbinom {18} {5} (3 ^ 5 + 2 ^ {13})\),\(x ^ 8 y ^ 9\) 的系数为 \(0\)

习题 2

  1. 用二项式定理证明:\(3 ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\)
  2. 对于任意实数 \(r\) 求 $ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} r ^ k$

答案

  1. 证:
    二项式定理常用形式 得:\({(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k\)
    令 \(x = 2\),则等式变为 \({(2 + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\),即 \(3 ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\)
    证毕

  2. 解:
    二项式定理常用形式 得:$ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} r ^ k = {(r + 1)} ^ n$

习题 3

二项式定理 证明:\(2 ^ n = \sum \limits _ {k = 0} ^ {n} {(- 1)} ^ k \dbinom {n} {k} 3 ^ {n - k}\)

答案

证:
二项式定理 得:\({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\)
令 \(x = -1, y = 3\),则等式变为 \({[(-1) + 3]} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-1)} ^ k 3 ^{n - k}\)
即 \(2 ^ n = \sum \limits _ {k = 0} ^ {n} {(- 1)} ^ k \dbinom {n} {k} 3 ^ {n - k}\)
证毕

习题 4

求 $ \sum \limits _ {k = 1} ^ n {(-1)} ^ k \dbinom {n} {k} {10} ^ k$

答案

解:
$ \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} {10} ^ k = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k$
二项式定理常用形式 得:\({(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k\)
令 \(x = -10\),则等式变为 \({[(-10) + 1]} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k\)
故 $ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k = {(-9)} ^ n$

习题 5

用组合意义证明 \(\dbinom {n} {k} - \dbinom {n - 3} {k} = \dbinom {n - 1} {k - 1} + \dbinom {n - 2} {k - 1} + \dbinom {n - 3} {k - 1}\)

答案

证:
选择 \(n\) 个小球中的 \(k\) 个

  • 左式含义:( 总方案数 ) \(-\) ( 前 \(3\) 个小球都不选的方案数 ),即表示至少选择前 \(3\) 个小球中的一个的方案数
  • 右式含义:( 选择第 \(1\) 个小球的方案数 ) \(+\) ( 不选择第 \(1\) 个小球,选择第 \(2\) 个小球的方案数 ) \(+\) ( 不选择第 \(1\) 个小球和第 \(2\) 个小球,选择第 \(3\) 个小球的方案数 )

显然,这两个含义是等价的
证毕

习题 6

设 \(n\) 是正整数,请证明:

\[ \sum \limits _ {k = 0} ^ n {(-1)} ^ k {\dbinom {n} {k}} ^ 2 = \begin{cases} 0, n = 2m + 1, m \in N_+ \\ {(-1)} ^ m \dbinom {2m} {m}, n = 2m, m \in N_+ \\ \end{cases} \]

答案

证:
如果 \(n\) 是奇数,则 \(k\) 和 \(n - k\) 是不同奇偶的
\(\therefore\) \({(-1)} ^ k\) 和 \({(-1)} ^ {n - k}\) 是一正一负的

\[\begin{aligned} \sum \limits _ {k = 0} ^ n {(-1)} ^ k {\dbinom {n} {k}} ^ 2 & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} + \sum \limits _ {k = m + 1} ^ {n} {(-1)} ^ k \dbinom {n} {k} \\ & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} - \sum \limits _ {k = m + 1} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} - \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} k \\ & = 0 \\ \end{aligned} \]

如果 \(n\) 是偶数,则 \(k\) 和 \(n - k\) 是同奇偶的
\(\therefore\) \({(-1)} ^ k = {(-1)} ^ {n - k}\)

二项式定理 得:

\[\begin{aligned} {(x + 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} x ^ k \\ {(x - 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {k} x ^ k \\ & =\sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ k \\ {(x ^ 2 - 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {k} {(x ^ 2)} ^ k \\ & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} {(x ^ 2)} ^ k \\ & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {2k} \\ \end{aligned} \]

故可列等式 \({(x + 1)} ^ n {(x - 1)} ^ n = {(x ^ 2 - 1) ^ n}\)

\[\begin{aligned} {(x + 1)} ^ n {(x - 1)} ^ n & = {(x ^ 2 - 1) ^ n} \\ \sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} x ^ k \times \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ k & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {2k} \\ \end{aligned} \]

\(\because\) 左右两边多项式相等
\(\therefore \forall i\),\(x ^ i\) 的系数相等
令 \(i = n = 2m\),即考虑 \(x ^ n\) 的系数

\[\begin{aligned} \sum \limits _ {k = 0} ^ {n} \dbinom {n} {n - k} x ^ {n - k} \times {(-1)} ^ k \dbinom {n} {k} x ^ k & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {n - k} \times \dbinom {n} {k} x ^ k & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 x ^ n & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 x ^ n & = {(-1)} ^ m \dbinom {2m} {m} x ^ n \\ \end{aligned} \]

同时约去 \(x ^ n\),得

\[\begin{aligned} \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 & = {(-1)} ^ m \dbinom {2m} {m} \\ \end{aligned} \]

证毕

习题 7

化简 \(\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3}\)

答案

证:
$\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3} = \dbinom {3} {0} \dbinom {n} {k} + \dbinom {3} {1} \dbinom {n} {k - 1} + \dbinom {3} {2} \dbinom {n} {k - 2} + \dbinom {3} {3} \dbinom {n} {k - 3} = $
有 \(2\) 堆小球,第 \(1\) 堆有 \(3\) 个,第 \(2\) 堆有 \(n\) 个
在 \(n + 3\) 个小球中选择 \(k\) 个,等价于 ( 在第 \(1\) 堆选择 \(0\) 个,第 \(2\) 堆选择 \(k\) 个 ) + ( 在第 \(1\) 堆选择 \(1\) 个,第 \(2\) 堆选择 \(k - 1\) 个 ) + ( 在第 \(1\) 堆选择 \(2\) 个,第 \(2\) 堆选择 \(k - 2\) 个 ) + ( 在第 \(1\) 堆选择 \(3\) 个,第 \(2\) 堆选择 \(k - 3\) 个)
证毕

习题 8

证明 \(\dbinom {r} {k} = \dfrac {r} {r - k} \dbinom {r - 1} {k}\),其中 \(r \in R\),\(k \in Z\),\(r \neq k\)

答案

本题需要使用牛顿二项式,不符合本博客的讨论范围

习题 9

求:\(1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n}\)

答案

解:

\[\begin{aligned} 1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n} & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \dbinom {n} {k} \\ \end{aligned} \]

公式 2 \(\dbinom {n + 1} {k + 1} = \dfrac {n + 1} {k + 1} \dbinom {n} {k}\) 得:\(\dbinom {n} {k} = \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1}\)

\[\begin{aligned} \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \times \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1} \\ & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {n + 1} \dbinom {n + 1} {k + 1} \\ & = \dfrac { \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dbinom {n + 1} {k + 1}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ n {(-1)} ^ {k + 1} \times \dbinom {n + 1} {k + 1}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 1} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - {(-1)} ^ 0 \times \dbinom {n + 1} {0}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - 1} {n + 1} \\ \end{aligned} \]

公式 5 $ \sum \limits _ {k = 0} ^ n {(-1)}^k \dbinom {n} {k} = 0$ 得:$ \sum \limits _ {k = 0} ^ {n + 1} {(-1)}^k \dbinom {n + 1} {k} = 0$

\[\begin{aligned} -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - 1} {n + 1} & = - \dfrac {0 - 1} {n + 1} \\ & = - \dfrac {-1} {n + 1} \\ & = \dfrac {1} {n + 1} \\ \end{aligned} \]

\(\therefore 1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n} = \dfrac {1} {n + 1}\)

习题 10

  1. 证明:\(\dbinom {n + 1} {k + 1} = \dbinom {0} {k} + \dbinom {1} {k} + \cdots + \dbinom {n - 1} {k} + \dbinom {n} {k}\)
  2. 证明:\(m ^ 2 = 2 \dbinom {m} {2} + \dbinom {m} {1}\)

答案

  1. 证:
    \(\dbinom {n + 1} {k + 1} = \dbinom {0} {k} + \dbinom {1} {k} + \cdots + \dbinom {n - 1} {k} + \dbinom {n} {k} = \sum \limits _ {i = 0} ^ {n} \dbinom {i} {k}\)
    在 \(n + 1\) 个小球中选择 \(k + 1\) 个的方案数,等价于 ( 枚举选择的最后一个小球的位置,在这个小球前选择 \(k\) 个小球 ) 的方案数之和
    证毕
  2. 证:
    ( 在 \(m\) 个不同的数中先后选择 \(2\) 个可以相同的数的方案数,组成一个有序数对 ),等价于 ( 选择不同的 \(2\) 个数组成 \(2\) 个有序数对 ) 和 ( 选择 \(1\) 个数组成 \(1\) 个有序数对 ) 的方案数之和
    证毕

习题 11

求整数 \(a, b, c\),使得对于所有的 \(m\),满足:\(m ^ 3 = a \dbinom {m} {3} + b \dbinom {m} {2} + c \dbinom {m} {1}\)

答案

解:
( 在 \(m\) 个不同的数中先后选择 \(3\) 个可以相同的数的方案数,组成一个有序数对 ),等价于 ( 选择不同的 \(3\) 个数组成 \(6\) 个有序数对 )、( 选择不同的 \(2\) 个数组成 \(6\) 个有序数对 )、( 选择 \(1\) 个数组成 \(1\) 个有序数对 ) 的方案数之和
\(\therefore m ^ 3 = 6 \times \dbinom {m} {3} + 6 \times \dbinom {m} {2} + 1 \times \dbinom {m} {1}\)
\(\therefore a = 6, b = 6, c = 1\)

习题 12

设 \(n\) 是整数,请证明 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {k} \dbinom {n} {k - 1} = \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n}\)

答案

证:

\[\begin {aligned} \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k} \dbinom {n} {k - 1} & = \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n} {k - 1} \\ \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n} & = \dfrac {1} {2} \times \dfrac {2n + 2} {n + 1} \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dfrac {1} {2} \times 2 \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dbinom {2n} {n - 1} \\ \end{aligned} \]

即证 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n} {k - 1} = \dbinom {2n} {n - 1}\)

  • 右式含义:在 \(2n\) 个小球中选择 \(n - 1\) 个的方案数
  • 左式含义:( 在前 \(n\) 个小球中选择 \(n - k\) 个 ) 和 ( 在后 \(n\) 个小球中选择 \(k - 1\) 个 ) 的方案数之和;\(\because 1 \leq k \leq n\),\(\therefore n - k, k - 1 \geq 0\),故此含义成立

显然,左右两式等价

证毕

习题 13

设 \(n\) 是整数,请用组合意义证明 \(\sum \limits _ {k = 1} ^ {n} k {\dbinom {n} {k}} ^ 2 = n \dbinom {2n - 1} {n - 1}\)

答案

证:

\[\begin {aligned} \sum \limits _ {k = 1} ^ {n} k {\dbinom {n} {k}} ^ 2 & = \sum \limits _ {k = 1} ^ {n} k \dbinom {n} {k} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 1} ^ {n} k \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 1} ^ {n} n \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} \\ \end{aligned} \]

即证 \(n \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} = n \dbinom {2n - 1} {n - 1}\)
即证 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} = \dbinom {2n - 1} {n - 1}\)

  • 右式含义:在 \(2n - 1\) 个小球中选择 \(n - 1\) 个的方案数
  • 左式含义:( 在前 \(n\) 个小球中选择 \(n - k\) 个 ) 和 ( 在后 \(n - 1\) 个小球中选择 \(k - 1\) 个 ) 的方案数之和;\(\because 1 \leq k \leq n\),\(\therefore n - k, k - 1 \geq 0\),故此含义成立

显然,左右两式等价

证毕

标签:aligned,dbinom,limits,dfrac,sum,笔记,times,恒等式,二项式
来源: https://www.cnblogs.com/DONGJIE-06/p/15569897.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有