ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

非监督学习-Apriori,PCA

2021-10-14 12:06:47  阅读:353  来源: 互联网

标签:KNN Apriori 算法 项集 频繁 监督 PCA 数据


Apriori算法原理总结 - 刘建平Pinard - 博客园Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策。比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了https://www.cnblogs.com/pinard/p/6293298.html

非监督学习(Unsupervised Learning,UL),这类算法的工作原理是从无标签的训练数据中学习数据的底层结构。进一步地,非监督学习又可细分为如下三类:

  • 关联(Association):发现集合中项目同时出现的概率,如通过分析超市购物篮,发现啤酒总是和尿片一起购买(啤酒与尿片的故事),较基础的算法有:Apriori
  • 聚类(Clustering):对数据进行分组,以便组内对象比组间对象更相似,较基础的算法有:K-Means
  • 降维(Dimensionality Reduction):减少数据集的变量数量,同时保证重要的信息不被丢失。降维可以通过特征提取方法和特征选择方法来实现,特征提取是执行从高维空间到低维空间的转换,特征选择是选择原始变量的子集,较基础的算法有:PCA

Apriori算法

Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策。

比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了频繁出现的数据集,那么对于超市,我们可以优化产品的位置摆放,对于电商,我们可以优化商品所在的仓库位置,达到节约成本,增加经济效益的目的。

频繁项集的评估标准:常用的频繁项集的评估标准有支持度,置信度和提升度三个。

支持度就是几个关联的数据在数据集中出现的次数占总数据集的比重。或者说几个数据关联出现的概率。如果我们有两个想分析关联性的数据X和Y,则对应的支持度为:

一般来说,支持度高的数据不一定构成频繁项集,但是支持度太低的数据肯定不构成频繁项集。 

置信度体现了一个数据出现后,另一个数据出现的概率,或者说数据的条件概率。如果我们有两个想分析关联性的数据X和Y,X对Y的置信度为:

举个例子,在购物数据中,纸巾对应鸡爪的置信度为40%,支持度为1%。则意味着在购物数据中,总共有1%的用户既买鸡爪又买纸巾;同时买鸡爪的用户中有40%的用户购买纸巾。

提升度表示含有Y的条件下,同时含有X的概率,与X总体发生的概率之比,即: 

一般来说,要选择一个数据集合中的频繁数据集,则需要自定义评估标准。最常用的评估标准是用自定义的支持度,或者是自定义支持度和置信度的一个组合。

Apriori算法思想

对于Apriori算法,我们使用支持度来作为我们判断频繁项集的标准。

Apriori算法的目标是找到最大的K项频繁集。这里有两层意思,首先,我们要找到符合支持度标准的频繁集。但是这样的频繁集可能有很多。第二层意思就是我们要找到最大个数的频繁集。比如我们找到符合支持度的频繁集AB和ABE,那么我们会抛弃AB,只保留ABE,因为AB是2项频繁集,而ABE是3项频繁集。

Apriori算法采用了迭代的方法,先搜索出候选1项集及对应的支持度,剪枝去掉低于支持度的1项集,得到频繁1项集。然后对剩下的频繁1项集进行连接,得到候选的频繁2项集,筛选去掉低于支持度的候选频繁2项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。

第i次的迭代过程包括扫描计算候选频繁i项集的支持度,剪枝得到真正频繁i项集和连接生成候选频繁i+1项集三步。

我们的数据集D有4条记录,分别是134,235,1235和25。现在我们用Apriori算法来寻找频繁k项集,最小支持度设置为50%。首先我们生成候选频繁1项集,包括我们所有的5个数据并计算5个数据的支持度,计算完毕后我们进行剪枝,数据4由于支持度只有25%被剪掉。我们最终的频繁1项集为1235,现在我们链接生成候选频繁2项集,包括12,13,15,23,25,35共6组。此时我们的第一轮迭代结束。

进入第二轮迭代,我们扫描数据集计算候选频繁2项集的支持度,接着进行剪枝,由于12和15的支持度只有25%而被筛除,得到真正的频繁2项集,包括13,23,25,35。现在我们链接生成候选频繁3项集,123, 135和235共3组,这部分图中没有画出。通过计算候选频繁3项集的支持度,我们发现123和135的支持度均为25%,因此接着被剪枝,最终得到的真正频繁3项集为235一组。由于此时我们无法再进行数据连接,进而得到候选频繁4项集,最终的结果即为频繁3三项集235。

Apriori算法流程:

输入:数据集合D,支持度阈值αα

输出:最大的频繁k项集

1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。

2)挖掘频繁k项集

   a) 扫描数据计算候选频繁k项集的支持度

   b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。

   c) 基于频繁k项集,连接生成候选频繁k+1项集。

3) 令k=k+1,转入步骤2。

从算法的步骤可以看出,Aprior算法每轮迭代都要扫描数据集,因此在数据集很大,数据种类很多的时候,算法效率很低。

Apriori算法总结:

 Aprior算法是一个非常经典的频繁项集的挖掘算法,很多算法都是基于Aprior算法而产生的,包括FP-Tree,GSP, CBA等。这些算法利用了Aprior算法的思想,但是对算法做了改进,数据挖掘效率更好一些,因此现在一般很少直接用Aprior算法来挖掘数据了,但是理解Aprior算法是理解其它Aprior类算法的前提,同时算法本身也不复杂,因此值得好好研究一番。

不过scikit-learn中并没有频繁集挖掘相关的算法类库,这不得不说是一个遗憾,不知道后面的版本会不会加上。

Python机器学习笔记:主成分分析(PCA)算法 - 战争热诚 - 博客园完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 一:引入问题 首先看一https://www.cnblogs.com/wj-1314/p/8032780.html

PCA(主成分分析)

PCA(Principal Components Analysis)即主成分分析,是一种常用的数据分析手段,是图像处理中经常用到的降维方法。对于一组不同维度之间可能存在线性相关关系的数据,PCA能够把这组数据通过正交变换变成各个维度之间线性无关的数据,经过PCA处理的数据中的各个样本之间的关系往往更直观,所以它是一种非常常用的数据分析和预处理工具。PCA处理之后的数据各个维度之间是线性无关的,通过剔除方差较小的那些维度上的数据,我们可以达到数据降维的目的。

PCA从原始变量出发,通过旋转变化(即原始变量的线性组合)构建出一组新的,互不相关的新变量,这些变量尽可能多的解释原始数据之间的差异性(即数据内在的结构),他们就成为原始数据的主成分。由于这些变量不相关,因此他们无重叠的各自解释一部分差异性。依照每个变量解释时差异性大小排序,他们成为第一主成分,第二主成分,以此类推。

主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维,去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主元(主成分),是旧特征的线性组合,这些线性组合最大化样本方差,尽量使用新的k个特征互不相关。这k维是全新的正交特征,是重新构造出来的k维特征,而不是简单地从n维特征中取出其余n-k维特征。

PCA降维的算法步骤:

设有m条n维数据:

  • 1) 将原始数据按列组成n行m列矩阵X
  • 2)将X的每一行(代表一个属性字段)进行零均值化(去平均值),即减去这一行的均值
  • 3)求出协方差矩阵  C= 1/m*X*XT  
  • 4)求出协方差矩阵的特征值及对应的特征向量
  • 5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P(保留最大的k各特征向量)
  • 6)Y=PX 即为降维到K维后的数据

K近邻法(KNN)原理小结 - 刘建平Pinard - 博客园K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得https://www.cnblogs.com/pinard/p/6061661.html

KNN(K近邻)算法

 K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。

KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别。而KNN做回归时,一般是选择平均法,即最近的K个样本的样本输出的平均值作为回归预测值。

KNN算法三要素:k值的选取,距离度量的方式和分类决策规则。

分类决策规则,一般都是使用前面提到的多数表决法。

对于k值的选择,没有一个固定的经验,一般根据样本的分布,选择一个较小的值,可以通过交叉验证选择一个合适的k值。

选择较小的k值,就相当于用较小的领域中的训练实例进行预测,训练误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是泛化误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合
选择较大的k值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少泛化误差,但缺点是训练误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单。

对于距离的度量,我们有很多的距离度量方式,但是最常用的是欧式距离,即对于两个n维向量x和y,两者的欧式距离定义为:

KNN算法蛮力实现:

既然我们要找到k个最近的邻居来做预测,那么我们只需要计算预测样本和所有训练集中的样本的距离,然后计算出最小的k个距离即可,接着多数表决,很容易做出预测。这个方法的确简单直接,在样本量少,样本特征少的时候有效。但是在实际运用中很多时候用不上,为什么呢?因为我们经常碰到样本的特征数有上千以上,样本量有几十万以上,如果我们这要去预测少量的测试集样本,算法的时间效率很成问题。因此,这个方法我们一般称之为蛮力实现。比较适合于少量样本的简单模型的时候用。

既然蛮力实现在特征多,样本多的时候很有局限性,那么我们有没有其他的好办法呢?有!这里我们讲解两种办法,一个是KD树实现,一个是球树实现。

KD树实现

KD树算法没有一开始就尝试对测试样本分类,而是先对训练集建模,建立的模型就是KD树,建好了模型再对测试集做预测。所谓的KD树就是K个特征维度的树,注意这里的K和KNN中的K的意思不同。KNN中的K代表最近的K个样本,KD树中的K代表样本特征的维数。为了防止混淆,后面我们称特征维数为n。

KD树算法包括三步,第一步是建树,第二部是搜索最近邻,最后一步是预测。

未完待续。。。

 

 

 

标签:KNN,Apriori,算法,项集,频繁,监督,PCA,数据
来源: https://blog.csdn.net/weixin_39915444/article/details/120759663

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有