ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

图融合GCN(Graph Convolutional Networks)

2021-09-08 06:31:30  阅读:343  来源: 互联网

标签:Convolutional conv Graph self torch GCN bias adj Networks


图融合GCN(Graph Convolutional Networks)

数据其实是图(graph),图在生活中无处不在,如社交网络,知识图谱,蛋白质结构等。本文介绍GNN(Graph Neural Networks)中的分支:GCN(Graph Convolutional Networks)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GCN的PyTorch实现

虽然GCN从数学上较难理解,但是,实现是非常简单的,值得注意的一点是,一般情况下邻接矩阵是稀疏矩阵,所以,在实现矩阵乘法时,采用稀疏运算会更高效。首先,图卷积层的实现:

import torch
import torch.nn as nn


class GraphConvolution(nn.Module):
"""GCN layer"""

def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.Tensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)

self.reset_parameters()

def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight)
if self.bias isnotNone:
nn.init.zeros_(self.bias)

def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias isnotNone:
return output + self.bias
else:
return output

def extra_repr(self):
return'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias isnotNone
)
对于GCN,只需要将图卷积层堆积起来就可以,这里,实现一个两层的GCN:
class GCN(nn.Module):
"""a simple two layer GCN"""
def __init__(self, nfeat, nhid, nclass):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)

def forward(self, input, adj):
h1 = F.relu(self.gc1(input, adj))
logits = self.gc2(h1, adj)
return logits

这里的激活函数采用ReLU,后面,将用这个网络实现一个图中节点的半监督分类任务。

数据的提取,只需要load就可以:

# https://github.com/tkipf/pygcn/blob/master/pygcn/utils.py
adj, features, labels, idx_train, idx_val, idx_test = load_data(path="./data/cora/")

值得注意的有两点,一是论文引用应该是单向图,但是在网络时,要先将其转成无向图,或者说建立双向引用,这个对模型训练结果影响较大:

# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)

另外,官方实现中对邻接矩阵采用的是普通均值归一化,当然,也可以采用对称归一化方式:

def normalize_adj(adj):
    """compute L=D^-0.5 * (A+I) * D^-0.5"""
    adj += sp.eye(adj.shape[0])
    degree = np.array(adj.sum(1))
    d_hat = sp.diags(np.power(degree, -0.5).flatten())
    norm_adj = d_hat.dot(adj).dot(d_hat)
    return norm_adj

这里,只采用图中140个有标签样本对GCN进行训练,每个epoch计算出这些节点特征,然后计算loss:

    loss_history = []
    val_acc_history = []
    for epoch in range(epochs):
        model.train()
        logits = model(features, adj)
        loss = criterion(logits[idx_train], labels[idx_train])
       
        train_acc = accuracy(logits[idx_train], labels[idx_train])
       
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
       
        val_acc = test(idx_val)
        loss_history.append(loss.item())
        val_acc_history.append(val_acc.item())
        print("Epoch {:03d}: Loss {:.4f}, TrainAcc {:.4}, ValAcc {:.4f}".format(
            epoch, loss.item(), train_acc.item(), val_acc.item()))

只需要训练200个epoch,就可以在测试集上达到80%左右的分类准确,GCN的强大可想而知:

 

 融合BN和Conv层

在PyTorch中实现这个融合操作:nn.Conv2d参数:

  • filter weights,W: conv.weight;
  • bias,b: conv.bias;

nn.BatchNorm2d参数:

 

具体的实现代码如下(Google Colab, https://colab.research.google.com/drive/1mRyq_LlJW4u_rArzzhEe_T6tmEWoNN1K):

import torch
    import torchvision
   
    def fuse(conv, bn):
   
        fused = torch.nn.Conv2d(
            conv.in_channels,
            conv.out_channels,
            kernel_size=conv.kernel_size,
            stride=conv.stride,
            padding=conv.padding,
            bias=True
        )
   
        # setting weights
        w_conv = conv.weight.clone().view(conv.out_channels, -1)
        w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps+bn.running_var)))
        fused.weight.copy_( torch.mm(w_bn, w_conv).view(fused.weight.size()) )
       
        # setting bias
        if conv.bias isnotNone:
            b_conv = conv.bias
        else:
            b_conv = torch.zeros( conv.weight.size(0) )
        b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(
                              torch.sqrt(bn.running_var + bn.eps)
                            )
        fused.bias.copy_( b_conv + b_bn )
   
        return fused
   
    # Testing
    # we need to turn off gradient calculation because we didn't write it
    torch.set_grad_enabled(False)
    x = torch.randn(16, 3, 256, 256)
    resnet18 = torchvision.models.resnet18(pretrained=True)
    # removing all learning variables, etc
    resnet18.eval()
    model = torch.nn.Sequential(
        resnet18.conv1,
        resnet18.bn1
    )
    f1 = model.forward(x)
    fused = fuse(model[0], model[1])
    f2 = fused.forward(x)
    d = (f1 - f2).mean().item()
    print("error:",d)

 

 

参考链接:

    1. Semi-Supervised Classification with Graph Convolutional Networks https://arxiv.org/abs/1609.02907
    2. How to do Deep Learning on Graphs with Graph Convolutional Networks https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780
    3. Graph Convolutional Networks http://tkipf.github.io/graph-convolutional-networks
    4. Graph Convolutional Networks in PyTorch https://github.com/tkipf/pygcn
    5. 回顾频谱图卷积的经典工作:从ChebNet到GCN https://www.jianshu.com/p/2fd5a2454781
    6. 图数据集之cora数据集介绍- 用pyton处理 - 可用于GCN任务 https://blog.csdn.net/yeziand01/article/details/93374216
    7. Speeding up model with fusing batch normalization and convolution (http://learnml.today/speeding-up-model-with-fusing-batch-normalization-and-convolution-3)

标签:Convolutional,conv,Graph,self,torch,GCN,bias,adj,Networks
来源: https://www.cnblogs.com/wujianming-110117/p/15240958.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有