ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

线程池的深入理解

2021-08-09 21:34:46  阅读:180  来源: 互联网

标签:Runnable java task util concurrent 理解 深入 线程 null


  简单研究下线程池的执行原理。以及execute 和 submit 方法的区别。

1. execute 方法接收的是一个Runnable 参数,返回值是void 类型,也就是不接收结果, 方法签名如下:

 java.util.concurrent.Executor#execute

void execute(Runnable command);

2. submit 方法三个重载的方法,如下:

 对应的方法如下:‘

(1) java.util.concurrent.ExecutorService#submit(java.lang.Runnable)

Future<?> submit(Runnable task);

(2)  java.util.concurrent.ExecutorService#submit(java.lang.Runnable, T)

<T> Future<T> submit(Runnable task, T result);

(3) java.util.concurrent.ExecutorService#submit(java.util.concurrent.Callable<T>)

<T> Future<T> submit(Callable<T> task);

1.java.util.concurrent.ThreadPoolExecutor#execute理解

测试代码

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(5, 5,
                0L, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<Runnable>(3));
        // execute 方法无返回值,相当于执行不带返回结果的任务
        threadPoolExecutor.execute(() -> {
            log.info("--" + Thread.currentThread().getName() + "--A");
            try {
                Thread.sleep(2 * 1000);
            } catch (InterruptedException e) {
            }
            log.info("--" + Thread.currentThread().getName() + "--B");
        });

查看源代码如下:

(1) 接口是Executor 的方法

    void execute(Runnable command);

(2) 实现类java.util.concurrent.ThreadPoolExecutor#execute

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

源码跟踪:

(1) addWorker(command, true) 增加worker

    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

worker 是一个内部类java.util.concurrent.ThreadPoolExecutor.Worker,其包含的重要属性和方法如下:

    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        public void run() {
            runWorker(this);
        }

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

...    

1》new Worker 的时候会创建线程,线程传入的Runnable 对象是Worker 自身,同时Worker 

2》t.start(); 启动的时候会调用java.util.concurrent.ThreadPoolExecutor.Worker#run 方法

3》然后调用到java.util.concurrent.ThreadPoolExecutor#runWorker, 方法内部调用task.run(); 相当于同步的调用 传给线程池的Runnable 任务的run 方法。

4》当不是第一个任务的时候走的是java.util.concurrent.ThreadPoolExecutor#getTask, 也就是从任务队列中阻塞拿去任务

    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

 2.  submit理解

1. java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable) 理解

查看源码如下:java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable)

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }

可以理解大体的思路是对,传给线程池的Runnable 进行了下包装,java.util.concurrent.AbstractExecutorService#newTaskFor(java.lang.Runnable, T) 如下:

    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }

(1) java.util.concurrent.RunnableFuture 继承了接口Runnable, Future<V>

public interface RunnableFuture<V> extends Runnable, Future<V> {

    void run();
}

java.util.concurrent.Future 接口如下:

public interface Future<V> {

    /**
     * Attempts to cancel execution of this task.  This attempt will
     * fail if the task has already completed, has already been cancelled,
     * or could not be cancelled for some other reason. If successful,
     * and this task has not started when {@code cancel} is called,
     * this task should never run.  If the task has already started,
     * then the {@code mayInterruptIfRunning} parameter determines
     * whether the thread executing this task should be interrupted in
     * an attempt to stop the task.
     *
     * <p>After this method returns, subsequent calls to {@link #isDone} will
     * always return {@code true}.  Subsequent calls to {@link #isCancelled}
     * will always return {@code true} if this method returned {@code true}.
     *
     * @param mayInterruptIfRunning {@code true} if the thread executing this
     * task should be interrupted; otherwise, in-progress tasks are allowed
     * to complete
     * @return {@code false} if the task could not be cancelled,
     * typically because it has already completed normally;
     * {@code true} otherwise
     */
    boolean cancel(boolean mayInterruptIfRunning);

    /**
     * Returns {@code true} if this task was cancelled before it completed
     * normally.
     *
     * @return {@code true} if this task was cancelled before it completed
     */
    boolean isCancelled();

    /**
     * Returns {@code true} if this task completed.
     *
     * Completion may be due to normal termination, an exception, or
     * cancellation -- in all of these cases, this method will return
     * {@code true}.
     *
     * @return {@code true} if this task completed
     */
    boolean isDone();

    /**
     * Waits if necessary for the computation to complete, and then
     * retrieves its result.
     *
     * @return the computed result
     * @throws CancellationException if the computation was cancelled
     * @throws ExecutionException if the computation threw an
     * exception
     * @throws InterruptedException if the current thread was interrupted
     * while waiting
     */
    V get() throws InterruptedException, ExecutionException;

    /**
     * Waits if necessary for at most the given time for the computation
     * to complete, and then retrieves its result, if available.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return the computed result
     * @throws CancellationException if the computation was cancelled
     * @throws ExecutionException if the computation threw an
     * exception
     * @throws InterruptedException if the current thread was interrupted
     * while waiting
     * @throws TimeoutException if the wait timed out
     */
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

java.util.concurrent.FutureTask 的重要属性和方法如下:

public class FutureTask<V> implements RunnableFuture<V> {

    private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;


    /** The underlying callable; nulled out after running */
    private Callable<V> callable;
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    /** The thread running the callable; CASed during run() */
    private volatile Thread runner;
    /** Treiber stack of waiting threads */
    private volatile WaitNode waiters;

    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

    public boolean isCancelled() {
        return state >= CANCELLED;
    }

    public boolean isDone() {
        return state != NEW;
    }

    public boolean cancel(boolean mayInterruptIfRunning) {
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();
                } finally { // final state
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
            finishCompletion();
        }
        return true;
    }

    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }

    public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        return report(s);
    }

    protected void done() { }

    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

...

1》java.util.concurrent.Executors#callable(java.lang.Runnable, T) 采用适配器模式,将Runnable 适配为Callable 

    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }

java.util.concurrent.Executors.RunnableAdapter 如下:

    static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

  可以看到是返回固定的结果, 也就是接受Runnable 的时候,返回的结果是固定的结果

2》然后同上面execute 方法一样,执行execute(ftask); 方法,这时候线程池跑的是FutureTask 对象

3》return ftask; 返回Future 对象,使得可以外部拿该对象可以获取执行结果。

4》线程跑任务会调用java.util.concurrent.FutureTask#run, 方法如下:

    public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

2. java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable, T) 理解

    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }

  根据上面的理解,是返回固定的结果result, 只不过java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable) 的返回结果是null。

3.  java.util.concurrent.AbstractExecutorService#submit(java.util.concurrent.Callable<T>) 理解

(1) 测试代码

        Future<String> submit1 = threadPoolExecutor.submit(new Callable<String>() {
            @Override
            public String call() throws Exception {
                log.info("--" + Thread.currentThread().getName() + "--E");
                try {
                    Thread.sleep(2 * 1000);
                } catch (InterruptedException e) {
                }
                log.info("--" + Thread.currentThread().getName() + "--F");
                return "123456";
            }
        });

(2) 源码:java.util.concurrent.AbstractExecutorService#submit(java.util.concurrent.Callable<T>)

    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

1》java.util.concurrent.AbstractExecutorService#newTaskFor(java.util.concurrent.Callable<T>) 创建 FutureTask

    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }

接着调用:java.util.concurrent.FutureTask#FutureTask(java.util.concurrent.Callable<V>)

    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

2》然后调用java.util.concurrent.ThreadPoolExecutor#execute 跑任务,只不过Runnable 对象是java.util.concurrent.FutureTask, 内部的run 方法是调用成员属性Callable 的call 方法,方法执行完之后记录其返回结果, 所以FutureTask 可以拿到返回的结果。

补充:Future 两个重要的方法

(1) java.util.concurrent.FutureTask#isDone 判断是否执行完成

    public boolean isDone() {
        return state != NEW;
    }

(2) 获取结果:

    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }

java.util.concurrent.FutureTask#awaitDone 阻塞获取结果:

    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

可以看到这里使用了 java.util.concurrent.locks.LockSupport#park(java.lang.Object) 进行阻塞线程,下面使用的是UNSAFE 类的相关API。

补充:关于LockSupport 的使用

   参考:https://www.jianshu.com/p/8e6b1942ae39

测试代码:

package org.example;

import java.util.concurrent.locks.LockSupport;

public class PlainTest2 {

    public static void main(String[] args) {
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("111222");
                LockSupport.park();
                System.out.println("333444");
                //LockSupport.park(obj);
            }
        });
        t.start();

        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
        }

        System.out.println("555555");
        LockSupport.unpark(t);
        System.out.println("555555");
    }
}

查看LockSupport 源码:

    public static void park() {
        UNSAFE.park(false, 0L);
    }

    public static void unpark(Thread thread) {
        if (thread != null)
            UNSAFE.unpark(thread);
    }

strace linux环境下面监测如下:

1》park

clock_gettime(CLOCK_MONOTONIC, {tv_sec=273, tv_nsec=622979062}) = 0
futex(0xf6797ab8, FUTEX_WAIT_PRIVATE, 1, NULL) = 0
futex(0xf6797a9c, FUTEX_WAIT_PRIVATE, 2, NULL) = 0
futex(0xf6797a9c, FUTEX_WAKE_PRIVATE, 1) = 0
clock_gettime(CLOCK_MONOTONIC, {tv_sec=373, tv_nsec=621209093}) = 0
clock_gettime(CLOCK_MONOTONIC, {tv_sec=373, tv_nsec=621237803}) = 0
futex(0xf6797344, FUTEX_WAIT_PRIVATE, 1, {tv_sec=0, tv_nsec=971290}) = 0
futex(0xf6797328, FUTEX_WAIT_PRIVATE, 2, NULL) = 0
futex(0xf6797328, FUTEX_WAKE_PRIVATE, 1) = 0

2》unpark

write(1, "555555", 6)                   = 6
write(1, "\n", 1)                       = 1
clock_gettime(CLOCK_MONOTONIC, {tv_sec=373, tv_nsec=620209800}) = 0
futex(0xf6797ab8, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0xf6797ab4, FUTEX_OP_SET<<28|0<<12|FUTEX_OP_CMP_GT<<24|0x1) = 1
futex(0xf6797a9c, FUTEX_WAKE_PRIVATE, 1) = 1
write(1, "555555", 6)                   = 6

  可以看到到内核调用的也是futex 指令,和synchronized 一样。

 

标签:Runnable,java,task,util,concurrent,理解,深入,线程,null
来源: https://www.cnblogs.com/qlqwjy/p/15104883.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有