ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

C学习:uthash使用小结

2021-07-21 21:02:47  阅读:748  来源: 互联网

标签:char return 学习 STR uthash sizeof SIZE 小结 StruHashTable


C学习:uthash使用小结

以LC题转盘锁为例,结合结构体/字符串匹配来讲解HASH表的建立、查找、增加、删除等。

基本概念


uthash是一个C语言的hash表实现的开源项目。它以宏定义的方式实现hash表,具有运行速度快、与关键类型无关等优点。uthash使用方便,只需将include下头文件uthash.h即可使用。

实例讲解


定义Hash表结构

首先建立一个结构体,包含Key键值str字符串以及hash表头hh,hh定义模式固定,直接复制该句即可。

typedef struct HashTable {
    char str[5]; // key
    UT_hash_handle hh; // table head
} StruHashTable;

初始化

将二维的字符串指针初始化到hash表中,同时应用了查找添加的功能。

void InitDeadHash(char **deadends, int deadendsSize, StruHashTable **ptrDead)
{
    int i;
    StruHashTable *hashTmp;
    for (i = 0; i < deadendsSize; i++) {
        HASH_FIND(hh, *ptrDead, deadends[i], sizeof(char) * STR_SIZE, hashTmp); // 键值所占空间sizeof(char) * 5
        if (hashTmp == NULL) { // 之前未出现
            hashTmp = (StruHashTable *)malloc(sizeof(StruHashTable)); // 增加一个hash节点
            if (hashTmp == NULL) {
                return;
            }
            memcpy(hashTmp->str, deadends[i], STR_SIZE);
            HASH_ADD(hh, *ptrDead, str, sizeof(char) * STR_SIZE, hashTmp); // str表示操作结构体中的键值,追加到hashtable中
        }
    }
    return;
}

查找

  • 参数1为固定表头hh,不会变
  • 参数2为当前hash表结构的首地址,可以将hash表结构看成单个链表节点,此处输入当前节点头
  • 参数3为要查找的元素,输入为字符串首指针
  • 参数4为hash表键值的空间大小,单位byte
  • 参数5为hash表结构指针,存储查找的返回结果,若查到则非空,否则为空
HASH_FIND(hh, *ptrDead, deadends[i], sizeof(char) * STR_SIZE, hashTmp); // 键值所占空间sizeof(char) * 5

增加

  • 除参数3外,其他参数与查找功能相同
  • 参数3为要添加的元素,此处为待添加的字符串首指针
HASH_ADD(hh, *ptrDead, str, sizeof(char) * STR_SIZE, hashTmp); // str表示操作结构体中的键值,追加到hashtable中

删除

  • todo
HASH_DEL(*head, user);  /* user: pointer to deletee */

实际应用

LeetCode 752. 打开转盘锁题目为例,实际应用的源代码如下:

/*
// 先实现最简单的,找到target
// 再加约束deadends跳过 + 最小次数
// 实现子函数加减功能
*/

typedef struct HashTable {
    char str[5]; // key
    UT_hash_handle hh; // table head
} StruHashTable;

typedef struct QueList {
    int cnt; // 转动次数
    char *s; // 当前密码
    struct QueList *next; // 下个可能密码
} StruQueList, *PtrStruQueList;

#define STR_SIZE 5
#define STR_LEN 4
int g_curLevelCnt;

char* AddOne(char *in, int j)
{
    char *res = (char *)malloc(sizeof(char) * STR_SIZE);
    if (res == NULL) {
        return NULL;
    }
    memcpy(res, in, STR_SIZE);
    char ch = res[j];
    if (ch == '9') {
        res[j] = '0';
        return res;
    }
    res[j] = ch + 1;
    return res;
}

char* MinusOne(char *in, int j)
{
    char *s = (char *)malloc(sizeof(char) * STR_SIZE);
    if (s == NULL) {
        return NULL;
    }
    memcpy(s, in, STR_SIZE);
    char ch = s[j];
    if (ch == '0') {
        s[j] = '9';
        return s;
    }
    s[j] = ch - 1;
    return s;
}

void Init(StruQueList **pQue, char *s, int cnt)
{
    (*pQue) = (PtrStruQueList)malloc(sizeof(StruQueList));
    (*pQue)->cnt = cnt;
    char *str = (char *)malloc(sizeof(char) * STR_SIZE);
    if (str == NULL) {
        return;
    }
    memcpy(str, s, STR_SIZE);
    (*pQue)->s = str;
    (*pQue)->next = NULL;
    g_curLevelCnt++;
}

void InitDeadHash(char **deadends, int deadendsSize, StruHashTable **ptrDead)
{
    int i;
    StruHashTable *hashTmp;
    for (i = 0; i < deadendsSize; i++) {
        HASH_FIND(hh, *ptrDead, deadends[i], sizeof(char) * STR_SIZE, hashTmp); // 键值所占空间sizeof(char) * 5
        if (hashTmp == NULL) { // 之前未出现
            hashTmp = (StruHashTable *)malloc(sizeof(StruHashTable)); // 增加一个hash节点
            if (hashTmp == NULL) {
                return;
            }
            memcpy(hashTmp->str, deadends[i], STR_SIZE);
            HASH_ADD(hh, *ptrDead, str, sizeof(char) * STR_SIZE, hashTmp); // str表示操作结构体中的键值,追加到hashtable中
        }
    }
    return;
}

void InitQueAndVisitHash(char *cur, StruQueList **ptrQueList, StruHashTable **ptrVisit)
{
    StruHashTable *hashTmp;
    *ptrQueList = (PtrStruQueList)malloc(sizeof(StruQueList));
    if (*ptrQueList == NULL) {
        return; // if malloc is failed
    }
    g_curLevelCnt = 0;
    Init(ptrQueList, cur, 0);
    hashTmp = (StruHashTable *)malloc(sizeof(StruHashTable)); // 增加一个hash节点
    if (hashTmp == NULL) {
        return;
    }
    memcpy(hashTmp->str, (*ptrQueList)->s, STR_SIZE);
    HASH_ADD(hh, *ptrVisit, str, sizeof(char) * STR_SIZE, hashTmp); // 增加一个已遍历状态
    return;
}

int DealCurStr(char *s, char *target, int cnt, StruQueList **ptrQueListLastNode, StruHashTable **ptrDead, StruHashTable **ptrVisit)
{
    StruHashTable *hashTmp1, *hashTmp2;
    // 如果与target匹配
    if (strcmp(s, target) == 0) { // 终止条件
        return cnt + 1;
    }

    // 如果在deadends
    HASH_FIND(hh, *ptrDead, s, sizeof(char) * STR_SIZE, hashTmp1);
    // 如果已遍历
    HASH_FIND(hh, *ptrVisit, s, sizeof(char) * STR_SIZE, hashTmp2);
    if (hashTmp1 == NULL && hashTmp2 == NULL) { // 不在dead里也没在visit里
        Init(&(*ptrQueListLastNode)->next, s, cnt + 1);
        *ptrQueListLastNode = (*ptrQueListLastNode)->next;
        hashTmp1 = (StruHashTable *)malloc(sizeof(StruHashTable)); // 增加一个hash节点
        if (hashTmp1 == NULL) {
            return -1;
        }
        memcpy(hashTmp1->str, s, STR_SIZE);
        HASH_ADD(hh, *ptrVisit, str, sizeof(char) * STR_SIZE, hashTmp1);
        // printf("%s\n", s);
    } else {
        free(s);
    }
    return 0;
}

// 大于0,则表示匹配成功,返回转动次数
// 等于0,则表示无异常
// 小于0,则表示出错
int NodeExpand(StruQueList *queList, StruQueList **ptrQueListLastNode, char *target, StruHashTable **ptrDead, StruHashTable **ptrVisit)
{
    int i, ret;
    char *s;

    // 转动1次, 当前节点演变出8种可能
    char *cur = queList->s;
    int cnt = queList->cnt;
    for (i = 0; i < 4; i++) {
        s = AddOne(cur, i);
        ret = DealCurStr(s, target, cnt, ptrQueListLastNode, ptrDead, ptrVisit);
        if (ret > 0) {
            return ret;
        }

        s = MinusOne(cur, i);
        ret = DealCurStr(s, target, cnt, ptrQueListLastNode, ptrDead, ptrVisit);
        if (ret > 0) {
            return ret;
        }
    }
    // printf("\n");
    return 0;
}

int LevelTraverse(StruQueList *queList, StruQueList **ptrQueListLastNode, char *target, StruHashTable **ptrDead, StruHashTable **ptrVisit)
{
    // 得到两个队列的指针,一个是当前指向,一个是层级对应的新开头
    // 从所有层每个节点中迭代新的可能
    int i, ret;
    while (queList != NULL) {
        // 遍历当前层所有节点
        int len = g_curLevelCnt;
        g_curLevelCnt = 0;
        for (i = 0; i < len; i++) {
            ret = NodeExpand(queList, ptrQueListLastNode, target, ptrDead, ptrVisit);
            if (ret > 0) { // 终止条件
                return ret;
            }
            queList = queList->next;
        }
        // printf("\n\n");
    }

    return 0;
}

// 按队列和BFS的方法来表达每次只转一次,对应的所有可能
int openLock(char ** deadends, int deadendsSize, char * target)
{
    char cur[STR_SIZE] = "0000"; // 初始值
    int ret;

    // special case
    if (strcmp(cur, target) == 0) {
        return 0;
    }

    // 初始化dead hash
    StruHashTable *dead = NULL; // 表头最开始都为空
    StruHashTable *hashTmp, *hashTmp1, *hashTmp2;
    InitDeadHash(deadends, deadendsSize, &dead);

    // special case
    HASH_FIND(hh, dead, target, sizeof(char) * STR_SIZE, hashTmp1);
    HASH_FIND(hh, dead, cur, sizeof(char) * STR_SIZE, hashTmp2);
    if (hashTmp1 != NULL || hashTmp2 != NULL) {
        return -1;  // deanends contain target
    }

    // 初始化队列0000和visit hash
    StruHashTable *visit = NULL; // 表头最开始都为空
    PtrStruQueList queList, queListLastNode;
    InitQueAndVisitHash(cur, &queList, &visit);

    queListLastNode = queList;
    ret = LevelTraverse(queList, &queListLastNode, target, &dead, &visit);
    if (ret > 0) { // 终止条件
        return ret;
    }
    return -1; // 遍历完所有无匹配
}

参考资料


  1. C语言Hash表使用方法详解
  2. C :uthash

标签:char,return,学习,STR,uthash,sizeof,SIZE,小结,StruHashTable
来源: https://blog.csdn.net/qq_17256689/article/details/118662115

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有