ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

R语言投资组合优化求解器:条件约束最优化、非线性规划求解

2021-07-01 17:07:48  阅读:242  来源: 互联网

标签:求解 非线性 约束 问题 objective 最小化 优化 最优化


本文将介绍R中可用于投资组合优化的不同求解器。

通用求解器

通用求解器可以处理任意的非线性优化问题,但代价可能是收敛速度慢。

默认包

包stats(默认安装的基本R包)提供了几个通用的优化程序。

  • optimize()。用于区间内的一维无约束函数优化(对于一维求根,使用uniroot())。
f <- function(x) exp(-0.5*x) * sin(10*pi*x)
f(0.5)

 


result <- optimize(f, interval = c(0, 1), tol = 0.0001)
result


 

# 绘制
curve(0, 1, n = 200)

 

  • optim()通用优化,有六种不同的优化方法。
    • Nelder-Mead:相对稳健的方法(默认),不需要导数。
    • CG:适用于高维无约束问题的低内存优化
    • BFGS:简单的无约束的准牛顿方法
    • L-BFGS-B:用于边界约束问题的优化
    • SANN: 模拟退火法
    • Brent: 用于一维问题(实际上是调用optimize())。

这个例子做了一个最小二乘法拟合:最小化

 

# 要拟合的数据点
# 线性拟合的l2-norm误差平方 y ~ par[1] + par[2]*x
#  调用求解器(初始值为c(0, 1),默认方法为 "Nelder-Mead")。
optim(par = c(0, 1), f, data = dat)


# 绘制线性回归图

 

# 与R中内置的线性回归进行比较
lm(y ~ x, data = dat)

下一个例子说明了梯度的使用,著名的Rosenbrock香蕉函数:

,梯度

,无约束最小化问题

#  Rosenbrock香蕉函数及其梯度
banana <- function(x)
    c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
       200 * (x[2] - x[1] * x[1]))
 optim(c(-1.2, 1), f_banana)



 

optim(c(-1.2, 1), f, gr, method = "BFGS")
 

下面的例子使用了界约束。

最小化

约束: 

 

p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }
# 25维度约束
optim(rep(3, 25), f,lower = rep(2, 25), upper = rep(4

这个例子使用模拟退火法(用于全局优化)。

#全局最小值在-15左右
res <- optim(50, f, method = "SANN")


# 现在进行局部改进(通常只改进了一小部分)
optim(res$par, f , method = "BFGS")

 

 

 

  • constrOptim()。使用自适应约束算法,在线性不等式约束下最小化一个函数(调用optim())。
#  不等式约束(ui %*% theta >= ci): x <= 0.9,  y - x > 0.1
constrOptim(c(.5, 0) 

 

  • nlm(): 这个函数使用牛顿式算法进行目标函数的最小化。
nlm(f, c(10,10))

  • nlminb(): 进行***约束优化。.
nlminb(c(-1.2, 1), f)

nlminb(c(-1.2, 1), f, gr)

optim

基础函数optim()作为许多其他求解器的包,可以方便地使用和比较。

# opm() 可以同时使用几个方法
opm(  f , method = c("Nelder-Mead", "BFGS"))

全局优化

全局优化与局部优化的理念完全不同(全局优化求解器通常被称为随机求解器,试图避免局部最优点)。

特定类别问题的求解器

如果要解决的问题属于某一类问题,如LS、LP、MILP、QP、SOCP或SDP,那么使用该类问题的专用求解器会更好。
 

最小二乘法 (LS)

线性最小二乘法(LS)问题是将最小化,可能有界或线性约束。

线性规划(LP)

函数solveLP(),可以方便地解决以下形式的LP:

最小化:

约束:

 

 
#> 加载所需软件包


cvec <- c(1800, 600, 600)  # 毛利率
bvec <- c(40, 90, 2500)  # 捐赠量

# 运行求解器
solveLP(maximum = TRUE)

 

 

混合整数线性规划 (MILP)

lpSolve(比linprog快得多,因为它是用C语言编码的)可以解决线性混合整数问题(可能带有一些整数约束的LP)。

 
# 设置问题: 
#   maximize      x1 + 9 x2 + x3 
#   subject to    x1 + 2 x2 + 3 x3 <= 9
#               3 x1 + 2 x2 + 2 x3 <= 15
 
# 运行求解
res <- lp("max", f, con)


 

 

# 再次运行,这次要求三个变量都是整数
 lp(  int.vec = 1:3)

 

solution

 

二次规划 (QP)

可以方便地解决以下形式的QP

 

最小化:
约束:
# 设置问题: 
#   minimize    -(0 5 0) %*% x + 1/2 x^T x
#   subject to  A^T x >= b
#   with b = (-8,2,0)^T
#       (-4 2  0)
#   A = (-3 1 -2)
#       ( 0 0  1)

#运行求解
solve(Dmat,...)

 

解决具有绝对值约束和目标函数中的绝对值的二次规划。

二阶锥规划 (SOCP)

有几个包:

  • ECOSolveR提供了一个与嵌入式COnic Solver(ECOS)的接口,这是一个著名的、高效的、稳健的C语言库,用于解决凸问题。

  • CLSOCP提供了一个用于解决SOCP问题的一步平滑牛顿方法的实现。

 

优化基础

我们已经看到了两个包,它们是许多其他求解器的包。

 

用于凸问题、MIP和非凸问题

ROI包为处理R中的优化问题提供了一个框架。它使用面向对象的方法来定义和解决R中的各种优化任务,这些任务可以来自不同的问题类别(例如,线性、二次、非线性规划问题)。

LP – 考虑 LP:

最大化:

 

约束:

 

#> ROI: R 优化基础设施
#> 求解器插件: nlminb, ecos, lpsolve, scs.
#> 默认求解器: auto.

 OP(objective = L_objective(c(3, 7, -12)),...,
           maximum = TRUE)

#> 投资回报率优化问题:

# 让我们来看看可用的求解器

# solve it
res <- ROI_solve(prob)
res

 

 

MILP – 考虑先前的LP,并通过添加约束条件x2,x3∈Z使其成为一个MILP.

# 只需修改之前的问题
types(prob) <- c("C", "I", "I")
prob

 

BLP – 考虑二元线性规划 (BLP):

最小化:

约束:

 

 OP(objective = L_objective,..., ,
           types = rep("B", 5))
ROI_solve(prob)

#> Optimal solution found.
#> The objective value is: -1.01e+02
 

SOCP – 考虑SOCP:

最大化:

约束:

并注意到SOC约束  可以写成或 ,在代码中实现为:

 OP(objective = L_objective,...,
           maximum = TRUE)

 

 

SDP--考虑SDP:

最小化:

约束:

 

并注意SDP约束可以写成(大小为3是因为在我们的问题中,矩阵为2×2,但vech()提取了3个独立变量,因为矩阵是对称的)。

OP(objective = L_objective,..., 
                                       rhs ))

 
NLP – 考虑非线性规划(NLP)

最大化

约束

OP(objective = F_objective,..., bounds ,
           maximum = TRUE)

 

凸优化

R为凸优化提供了一种面向对象的建模语言。它允许用户用自然的数学语法来制定凸优化问题,而不是大多数求解器所要求的限制性标准形式。通过使用具有已知数学特性的函数库,结合常数、变量和参数来指定目标和约束条件集。现在让我们看看几个例子。

最小二乘法 – 让我们从一个简单的LS例子开始:最小化

当然,我们可以使用R的基础线性模型拟合函数lm()。

# 生成数据
m <- 100
n <- 10
beta_true <- c(-4:5)


# 生成数据
res <- lm(y ~ 0 + X)   # 0表示我们的模型中没有截距。

 

用CVXR来做

result <- solve(prob)
str(result)

   

我们现在可以很容易地添加一个限制条件来解决非负的LS。

Problem(Minimize(obj), constraints = list(beta >= 0))
solve(prob)

 

稳健的Huber回归 - 让我们考虑稳健回归的简单例子:

最小化

其中

 
sum(huber(y - X %*% beta, M)
Problem(Minimize(obj))
solve(prob)
 

 

弹性网正则化 - 我们现在要解决的问题是:最小化

# 定义正则化项
elastic<- function(beta) {
  ridge <- (1 - alpha) * sum(beta^2)
  lasso <- alpha * p_norm(beta, 1)


# 定义问题并解决它

sum((y - X %*% beta)^2) + elastic(beta, lambda, alpha)
Problem(Minimize(obj))
solve(prob)

稀疏逆协方差矩阵--考虑矩阵值的凸问题:最大化,条件是

log_det(X) - matrix_trace(X %*% S)
list(sum(abs(X)) <= alpha)

协方差--考虑矩阵值的凸问题:在的条件下,最大化

constr <- list(Sigma[1,1] == 0.2, Sigma[1,2] >= 0, Sigma[1,3] >= 0,
               Sigma[2,2] == 0.1, Sigma[2,3] <= 0, Sigma[2,4] <= 0,
               Sigma[3,3] == 0.3, Sigma[3,4] >= 0, Sigma[4,4] == 0.1)

投资组合优化--考虑马科维茨投资组合设计:最大化

Problem(Maximize(obj), constr)
solve(prob)
 
结论

R语言中可用的求解器的数量很多。建议采取以下步骤。

  • 如果是凸优化问题,那么开始进行初步测试。
  • 如果速度不够快,使用ROI。
  • 如果仍然需要更快的速度,那么如果问题属于定义好的类别之一,则使用该类别专用的求解器(例如,对于LP,推荐使用lpSolve,对于QP则使用quadprog)。
  • 然而,如果问题不属于任何类别,那么就必须使用非线性优化的一般求解器。在这个意义上,如果一个局部的解决方案就够了,那么可以用许多求解器的包。如果需要全局求解器,那么软件包gloptim是一个不错的选择,它是许多全局求解器的包。

 


标签:求解,非线性,约束,问题,objective,最小化,优化,最优化
来源: https://blog.51cto.com/u_15198753/2965417

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有