ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

P1829 [国家集训队]Crash的数字表格

2021-06-21 22:32:58  阅读:193  来源: 互联网

标签:lfloor frac min sum rfloor ij P1829 Crash 国家集训队


Label

经典莫比乌斯反演转化 g c d ( i , j ) gcd(i,j) gcd(i,j)(P3768弱化版)

Description

给定两个正整数 n , m ( n , m ≤ 1 0 7 ) n,m(n,m\leq 10^7) n,m(n,m≤107),求

​ ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) \sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j) i=1∑n​j=1∑m​lcm(i,j)

Solution

∵ \because ∵ ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) = ∑ i = 1 n ∑ j = 1 m i j ( i , j ) \sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{(i,j)} i=1∑n​j=1∑m​lcm(i,j)=i=1∑n​j=1∑m​(i,j)ij​

若此处再利用 φ ∗ 1 = i d \varphi*1=id φ∗1=id反演, φ \varphi φ的求和式在分母上,不好提取。故考虑传统方法,即外层枚举 g c d ( i , j ) gcd(i,j) gcd(i,j):

即 ∑ i = 1 n ∑ j = 1 m i j ( i , j ) \sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{(i,j)} i=1∑n​j=1∑m​(i,j)ij​

= ∑ d = 1 m i n ( n , m ) 1 d ∑ i = 1 n ∑ j = 1 m i j [ ( i , j ) = d ] =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[(i,j)=d] =d=1∑min(n,m)​d1​i=1∑n​j=1∑m​ij[(i,j)=d]

= ∑ d = 1 m i n ( n , m ) 1 d ∑ i = 1 n ∑ j = 1 m i j [ g c d ( i d , j d ) = 1 ] =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[gcd(\frac{i}{d},\frac{j}{d})=1] =d=1∑min(n,m)​d1​i=1∑n​j=1∑m​ij[gcd(di​,dj​)=1]

= ∑ d = 1 m i n ( n , m ) 1 d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d i d j [ g c d ( i , j ) = 1 ] =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}didj[gcd(i,j)=1] =d=1∑min(n,m)​d1​i=1∑⌊dn​⌋​j=1∑⌊dm​⌋​didj[gcd(i,j)=1]

= ∑ d = 1 m i n ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j ∑ p ∣ ( i , j ) μ ( p ) =\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}ij\sum_{p|(i,j)}\mu(p) =d=1∑min(n,m)​di=1∑⌊dn​⌋​j=1∑⌊dm​⌋​ijp∣(i,j)∑​μ(p)

= ∑ d = 1 m i n ( n , m ) d ∑ p = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( p ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ p ∣ i ∧ p ∣ j ] i j =\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|i\wedge p|j]ij =d=1∑min(n,m)​dp=1∑min(⌊dn​⌋,⌊dm​⌋)​μ(p)i=1∑⌊dn​⌋​j=1∑⌊dm​⌋​[p∣i∧p∣j]ij

= ∑ d = 1 m i n ( n , m ) d ∑ p = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( p ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ p ∣ i ∧ p ∣ j ] i j =\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|i\wedge p|j]ij =d=1∑min(n,m)​dp=1∑min(⌊dn​⌋,⌊dm​⌋)​μ(p)i=1∑⌊dn​⌋​j=1∑⌊dm​⌋​[p∣i∧p∣j]ij

= ∑ d = 1 m i n ( n , m ) d ∑ p = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( p ) ∑ i = 1 ⌊ n d ⌋ [ p ∣ i ] i ∑ j = 1 ⌊ m d ⌋ [ p ∣ j ] j =\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}[p|i]i\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|j]j =d=1∑min(n,m)​dp=1∑min(⌊dn​⌋,⌊dm​⌋)​μ(p)i=1∑⌊dn​⌋​[p∣i]ij=1∑⌊dm​⌋​[p∣j]j

= ∑ d = 1 m i n ( n , m ) d ∑ p = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) p 2 μ ( p ) ∑ i = 1 ⌊ n p d ⌋ i ∑ j = 1 ⌊ m p d ⌋ j =\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{n}{pd}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{pd}\rfloor}j =d=1∑min(n,m)​dp=1∑min(⌊dn​⌋,⌊dm​⌋)​p2μ(p)i=1∑⌊pdn​⌋​ij=1∑⌊pdm​⌋​j

式子化简到这里为止,考虑如何对上式进行分块处理。

这个式子看起来很麻烦,但并不代表不能处理(事实上,如果化简出了正确且可处理的式子而看不出来此式可处理,这才是最GG的)。

我们可以分块改写:

设 S ( ⌊ n d ⌋ , ⌊ m d ⌋ ) = S ( N , M ) = ∑ p = 1 m i n ( N , M ) p 2 μ ( p ) ∑ i = 1 ⌊ N p ⌋ i ∑ j = 1 ⌊ M p ⌋ j S(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)=S(N,M)=\sum_{p=1}^{min(N,M)}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{N}{p}\rfloor}i\sum_{j=1}^{\lfloor\frac{M}{p}\rfloor}j S(⌊dn​⌋,⌊dm​⌋)=S(N,M)=∑p=1min(N,M)​p2μ(p)∑i=1⌊pN​⌋​i∑j=1⌊pM​⌋​j,则原式为

​ ∑ i = 1 m i n ( n , m ) d S ( ⌊ n d ⌋ , ⌊ m d ⌋ ) \sum_{i=1}^{min(n,m)}dS(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor) i=1∑min(n,m)​dS(⌊dn​⌋,⌊dm​⌋)

此式显然可以数论分块求,而每求一次 S S S函数的值,在 O ( n ) O(n) O(n)线性筛(注意此题数据范围,此处不必用杜教筛)预处理出 p 2 μ ( p ) p^2\mu(p) p2μ(p)的前缀和的前提下,又可以数论分块求解。

算法时间复杂度 Θ ( n + m ) \Theta(n+m) Θ(n+m)。

Code

#include<cstdio>
#include<iostream>
#define ri register int
#define ll long long
using namespace std;

const int MAXN=1e7;
const ll MOD=20101009;
int cnt,prime[MAXN+20];
ll N,M,mu[MAXN+20],sum[MAXN+20],Ans;
bool notprime[MAXN+20];

void Mobius()
{
	mu[1]=1,notprime[1]=true;
	for(ri i=2;i<=MAXN;++i)
	{
		if(!notprime[i]) prime[++cnt]=i,mu[i]=-1;
		for(ri j=1;j<=cnt&&i*prime[j]<=MAXN;++j)
		{
			notprime[i*prime[j]]=true;
			if(i%prime[j]==0) break;
			else mu[i*prime[j]]=-mu[i];
		}
	}
	for(ri i=1;i<=MAXN;++i) 
		sum[i]=(sum[i-1]+(((ll)i*(ll)i)%MOD)*mu[i]%MOD+MOD)%MOD;
}

inline ll sum1(ll n)
{
	return (n*(n+1)/2)%MOD;
}

ll S_mu(ll n,ll m)
{
	ll ans=0LL;
	for(ll l=1,r;l<=n;l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		ans=(ans+(((sum[r]-sum[l-1])%MOD+MOD)%MOD)*(sum1(n/l)*sum1(m/l)%MOD)%MOD)%MOD;
	}
	return ans;
}

int main()
{
	std::ios::sync_with_stdio(false);
	Mobius();
	cin>>N>>M;
	if(N>M) swap(N,M);
	for(ri l=1,r;l<=N;l=r+1)
	{
		r=min(N/(N/l),M/(M/l));
		Ans=(Ans+(S_mu(N/l,M/l)*((sum1(r)-sum1(l-1)+MOD)%MOD))%MOD)%MOD;
	}
	cout<<Ans;
	return 0;
}

标签:lfloor,frac,min,sum,rfloor,ij,P1829,Crash,国家集训队
来源: https://blog.csdn.net/guapi2333/article/details/118095965

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有