ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

(八)sklearn中计算准确率、召回率、精确度、F1值

2021-06-15 10:05:19  阅读:395  来源: 互联网

标签:F1 模型 labels predictions 准确率 垃圾邮件 print sklearn


介绍

准确率、召回率、精确度和F1分数是用来评估模型性能的指标。尽管这些术语听起来很复杂,但它们的基本概念非常简单。它们基于简单的公式,很容易计算。

这篇文章将解释以下每个术语:

  • 为什么用它
  • 公式
  • 不用sklearn来计算
  • 使用sklearn进行计算

在本教程结束时,我们将复习混淆矩阵以及如何呈现它们。文章的最后提供了谷歌colab笔记本的链接。


数据

假设我们正在对一封电子邮件进行分类,看它是不是垃圾邮件。

我们将有两个数组,第一个数组将存储实际值,而第二个数组将存储预测值。这些预测值是从分类器模型中获得的。模型的类型并不重要,我们感兴趣的是模型所做的预测。

# 实际值
labels = [1, 0, 0, 1, 1, 1, 0, 1, 1, 1]

# 预测值
predictions = [0, 1, 1, 1, 1, 0, 1, 0, 1, 0]

0-邮件不是垃圾邮件(负)

1-电子邮件是垃圾邮件(正)


关键术语

真正例

当标签为正且我们的预测值也为正时,就会发生这种情况。在我们的场景中,当电子邮件是垃圾邮件时,模型也将其分类为垃圾邮件。

TP = 0
for i in range(0,len(labels)):
    if labels[i] == predictions[i] and labels[i] == 1:
       TP+=1
print("True Positive: ", TP) # 3

假正例

这种情况发生在标签为负但我们的模型预测为正的情况下。在我们的场景中,当电子邮件不是垃圾邮件,但模型将其分类为垃圾邮件时。

FP = 0
for i in range(0,len(labels)):
    if labels[i] == 0 and predictions[i] == 1:
       FP+=1
print("False Positive: ", FP) # 3

真反例

这类似于真正例,唯一的区别是标签和预测值都是负。在我们的场景中,当电子邮件不是垃圾邮件时,模型也将其分类为非垃圾邮件。

TN = 0
for i in range(0,len(labels)):
    if labels[i] == predictions[i] and labels[i] == 0:
       TN+=1
print("True Negative: ", TN) # 0

假反例

这种情况发生在标签为正但预测值为负的情况下。在某种程度上,与假正例相反。在我们的场景中,当电子邮件是垃圾邮件,但模型将其分类为非垃圾邮件。

FN = 0
for i in range(0,len(labels)):
    if labels[i] == 1 and predictions[i] == 0:
       FN+=1
print("False Negative: ", FN) # 4

正确预测

这种情况是标签和预测值相同。在本例中,当模型将垃圾邮件分类为垃圾邮件,将非垃圾邮件分类为非垃圾邮件时。

也可以计算为真正例与真负例的总和。

ICP = 0
for i in range(0,len(labels)):
    if labels[i] != predictions[i]:
       ICP+=1
print("Incorrect Prediction: ", ICP)# 7
print(ICP == FP + FN) # True

不正确的预测

这种情况的条件是,标签和预测值不相等。在我们的场景中,错误的预测是模型将垃圾邮件分类为非垃圾邮件,将非垃圾邮件分类为垃圾邮件。

错误预测也可以计算为假正例和假反例的总和。

ICP = 0
for i in range(0,len(labels)):
    if labels[i] != predictions[i]:
       ICP+=1
print("Incorrect Prediction: ", ICP)# 7
print(ICP == FP + FN) # True

准确率

准确率是正确的预测数与预测总数的比率。这是对模型最简单的度量之一。我们必须力求我们的模型达到高准确率。如果一个模型具有较高的准确率,可以推断出该模型在大多数情况下做出了正确的预测。

不使用Sklearn

accuracy = (TP + TN)/(TP + FP + TN + FN)
print(accuracy*100) 

使用Sklearn

from sklearn.metrics import accuracy_score
print(accuracy_score(labels , predictions)*100)

召回率

准确率可能会误导人

高准确率有时会使人产生误解。考虑下面的场景:

labels = [0,0,0,0,1,0,0,1,0,0]
predictions = [0 ,0 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0]
print(accuracy_score(labels , predictions)*100) # 80

与非垃圾邮件相比,垃圾邮件很少见。因此,label = 0的出现次数要高于label = 1的出现次数。在上面的代码中,labels有8个非垃圾邮件和2个垃圾邮件。

如果模型总是将邮件分类为非垃圾邮件,那么准确率将达到80%。这是高度误导,因为模型基本上无法检测垃圾邮件。

计算召回率

召回率计算预测正例数与正例标签总数的比率。

在上面的例子中,模型召回率为0,因为它有0个真正的正例。这告诉我们,模型在垃圾邮件上表现不佳,需要改进它。

不使用Sklearn

recall = (TP)/(TP+FN)
print(recall*100)

使用Sklearn

from sklearn.metrics import recall_score
print(recall_score(labels,predictions))

精确度

召回率可能具有误导性的案例

高召回率也很容易误导人。考虑当模型被调优为总是返回正值的预测时的情况。它基本上把所有的电子邮件都归类为垃圾邮件。

labels = [0,0,0,0,1,0,0,1,0,0]
predictions = [1,1,1,1,1,1,1,1,1,1]
print(accuracy_score(labels , predictions)*100)
print(recall_score(labels , predictions)*100)

虽然上述情况的准确率较低(20%),但召回率较高(100%)。

计算精确度

精确度是预测正确的正例数与正预测总数的比率。

在上述情况下,精确度较低(20%),因为模型预测共10个正例,其中只有2个是正确的。这告诉我们,尽管召回率很高,而且模型在正面案例(即垃圾邮件)上表现很好,但在非垃圾邮件上表现很差。

我们的准确率和精确度相等的原因是,模型预测的是所有的正例结果。在现实世界中,模型可以正确地预测一些负面的情况,从而获得更高的准确率。然而,精确度仍然保持不变,因为它只依赖于预测正确的正例数和正预测总数。

不使用Sklearn

precision = TP/(TP+FP)
print(precision)

使用Sklearn

from sklearn.metrics import precision_score
print(precision_score(labels,predictions)*100)

F1得分

F1得分取决于召回和精确度,它是这两个值的调和平均值。

我们考虑调和平均值除以算术平均值,因为想要低召回率或精确度来产生低F1分数。在之前的例子中,召回率为100%,精确度为20%,算术平均值为60%,而调和平均值为33.33%。调和平均值更低,更有意义,因为我们知道模型很糟糕。

AM = (1 + 0.2)/2
HM = 2*(1*0.2)/(1+0.2)
print(AM)# 0.6
print(HM)# 0.333

不使用Sklearn

f1 = 2*(precision * recall)/(precision + recall)
print(f1)

使用Sklearn

from sklearn.metrics import f1_score
print(f1_score(labels, predictions))

混淆矩阵

混淆矩阵是一个表示真正例、假正例、真反例和假反例数的矩阵。

假设我们正在处理以下数据:

# 实际值
labels = [1, 0, 0, 1, 1, 1, 0, 1, 1, 1]

# 预测值
predictions = [0, 0, 1, 1, 1, 0, 1, 0, 1, 0]

使用sklearn计算混淆矩阵

from sklearn.metrics import confusion_matrix
confusion = confusion_matrix(labels, predictions)
FN = confusion[1][0]
TN = confusion[0][0]
TP = confusion[1][1]
FP = confusion[0][1][1]

你还可以传递一个normalize参数来对计算数据进行规范化。

以条形图显示混乱矩阵

plt.bar(['False Negative' , 'True Negative' , 'True Positive' , 'False Positive'],[FN,TN,TP,FP])
plt.show()

将混淆矩阵显示为热图

import seaborn as sns
sns.heatmap(confusion , annot=True , xticklabels=['Negative' , 'Positive'] , yticklabels=['Negative' , 'Positive'])
plt.ylabel("Label")
plt.xlabel("Predicted")
plt.show()

使用pandas显示混乱矩阵

import pandas as pd
data = {'Labels' : labels, 'Predictions': predictions}
df = pd.DataFrame(data, columns=['Labels','Predictions'])
confusion_matrix = pd.crosstab(df['Labels'], df['Predictions'], rownames=['Labels'], colnames=['Predictions'])
print (confusion_matrix)


使用Sklearn生成分类报告

from sklearn.metrics import classification_report
print(classification_report(labels,predictions))

下面是输出:


结论

准确率本身并不能决定一个模型的好坏,但是准确率结合精确度、召回率和F1分数可以很好地说明模型的性能。

标签:F1,模型,labels,predictions,准确率,垃圾邮件,print,sklearn
来源: https://www.cnblogs.com/zhangxianrong/p/14884257.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有