ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

李代数和表示理论导学-Definitions and first examples

2021-06-05 19:57:05  阅读:204  来源: 互联网

标签:dim adx 导学 xy pmatrix examples delta Definitions mathop


Definitions and first examples

  1. Let L L L be the real vector space R 3 R^3 R3. Define [ x y ] = x × y [xy]=x\times y [xy]=x×y (cross product of vectors) for x x x, y y y ∈ L \in L ∈L, and verify that L L L is a Lie algebra. Write down the structure constants relative to the usual basis of R 3 R^3 R3.Verify L L L is a Lie algebra
    ( L 1 ) (L1) (L1) Cross product is bilinear
    ( L 2 ) (L2) (L2) [ x x ] = x × x = 0 [xx]=x\times x=0 [xx]=x×x=0
    ( L 3 ) (L3) (L3) [ x [ y z ] ] = [ x , y × z ] = x × ( y × z ) = ( x , z ) y − ( x , y ) z [x[yz]]=[x,y\times z]=x\times (y\times z)=(x,z)y-(x,y)z [x[yz]]=[x,y×z]=x×(y×z)=(x,z)y−(x,y)z
    [ y [ z x ] ] = y × ( z × x ) = ( y , x ) z − ( y , z ) x [y[zx]]=y\times (z\times x)=(y,x)z-(y,z)x [y[zx]]=y×(z×x)=(y,x)z−(y,z)x
    [ z [ x y ] ] = z × ( x × y ) = ( z , y ) x − ( z , x ) y [z[xy]]=z\times(x\times y)=(z,y)x-(z,x)y [z[xy]]=z×(x×y)=(z,y)x−(z,x)y
    [ x [ y z ] ] + [ y [ z x ] ] + [ z [ x y ] ] = ( x , z ) y − ( x , y ) z + ( y , x ) z − ( y , z ) x + ( z , y ) x − ( z , x ) y = [ ( x , z ) − ( z , x ) ] y + [ ( y , x ) − ( x , y ) ] z + [ ( z , y ) − ( y , z ) ] x = 0 [x[yz]]+[y[zx]]+[z[xy]]=(x,z)y-(x,y)z+(y,x)z-(y,z)x+(z,y)x-(z,x)y=[(x,z)-(z,x)]y+[(y,x)-(x,y)]z+[(z,y)-(y,z)]x=0 [x[yz]]+[y[zx]]+[z[xy]]=(x,z)y−(x,y)z+(y,x)z−(y,z)x+(z,y)x−(z,x)y=[(x,z)−(z,x)]y+[(y,x)−(x,y)]z+[(z,y)−(y,z)]x=0
    So L L L is a Lie algebra and the multiplication table as follows
[ ] x y z
x 0 z -y
y -z 0 x
z y -x 0
  1. Verify that the following equations and those implied by ( L 1 ) ( L 2 ) (L1) (L2) (L1)(L2) define a Lie algebra structure on a three dimensional vector space with basis ( x , y , z ) : [ x y ] = z , [ x z ] = y , [ y z ] = 0. (x,y,z):[xy]=z,[xz]=y,[yz]=0. (x,y,z):[xy]=z,[xz]=y,[yz]=0.
    We only to verify Jacobi identity
    [ x [ y z ] ] + [ y [ z x ] ] + [ z [ x y ] ] = [ x 0 ] + [ y , − y ] + [ z z ] = 0 [x[yz]]+[y[zx]]+[z[xy]]=[x0]+[y,-y]+[zz]=0 [x[yz]]+[y[zx]]+[z[xy]]=[x0]+[y,−y]+[zz]=0

  2. Let x = ( 0 1 0 0 ) x=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x=(00​10​), h = ( 1 0 0 − 1 ) h=\begin{pmatrix} 1&0 \\ 0&-1 \end{pmatrix} h=(10​0−1​), y = ( 0 0 1 0 ) y=\begin{pmatrix} 0&0 \\ 1&0 \end{pmatrix} y=(01​00​) be an ordered basis for s l ( 2 , F ) {sl}(2,F) sl(2,F). Computer the matrices of a d x , a d h , a d y ad x, ad h, ad y adx,adh,ady relative to this basis.
    ∵ \because ∵ [ x , h ] = x h − h x = − 2 x [x,h]=xh-hx=-2x [x,h]=xh−hx=−2x
    [ x , y ] = x y − y x = h [x,y]=xy-yx=h [x,y]=xy−yx=h
    [ y , h ] = y h − h y = 2 y [y,h]=yh-hy=2y [y,h]=yh−hy=2y
    ∴ \therefore ∴ a d x ( x , h , y ) = ( a d x ( x ) , a d x ( h ) , a d x ( y ) ) = ( [ x x ] , [ x h ] , [ x y ] ) = ( 0 , − 2 x , h ) = ( x , h , y ) ( 0 − 2 0 0 0 1 0 0 0 ) adx(x,h,y)=(adx(x),adx(h),adx(y))=([xx],[xh],[xy])=(0,-2x,h)=(x,h,y)\begin{pmatrix} 0&-2&0\\0&0&1\\0&0&0\end{pmatrix} adx(x,h,y)=(adx(x),adx(h),adx(y))=([xx],[xh],[xy])=(0,−2x,h)=(x,h,y)⎝⎛​000​−200​010​⎠⎞​
    a d y ( x , h , y ) = ( a d y ( x ) , a d y ( h ) , a d y ( y ) ) = ( [ y x ] , [ y h ] , [ y y ] ) = ( − h , 2 y , 0 ) = ( x , h , y ) ( 0 0 0 − 1 0 0 0 2 0 ) ady(x,h,y)=(ady(x),ady(h),ady(y))=([yx],[yh],[yy])=(-h,2y,0)=(x,h,y)\begin{pmatrix} 0&0&0 \\ -1&0&0 \\ 0&2&0 \end{pmatrix} ady(x,h,y)=(ady(x),ady(h),ady(y))=([yx],[yh],[yy])=(−h,2y,0)=(x,h,y)⎝⎛​0−10​002​000​⎠⎞​
    a d h ( x , h , y ) = ( a d h ( x ) , a d h ( h ) , a d h ( y ) ) = ( [ h x ] , [ h h ] , [ h y ] ) = ( 2 x , 0 , − 2 y ) = ( x , h , y ) ( 2 0 0 0 0 0 0 0 − 2 ) adh(x,h,y)=(adh(x),adh(h),adh(y))=([hx],[hh],[hy])=(2x,0,-2y)=(x,h,y)\begin{pmatrix}2&0&0\\0&0&0\\0&0&-2\end{pmatrix} adh(x,h,y)=(adh(x),adh(h),adh(y))=([hx],[hh],[hy])=(2x,0,−2y)=(x,h,y)⎝⎛​200​000​00−2​⎠⎞​

  3. Find a linear Lie algebra isomorphic to the nonabelian two dimensional algebra constructed in (1.4).
    Define a map φ : L → a d L \varphi : L\rightarrow adL φ:L→adL by x ↦ a d x , y ↦ a d y , [ x y ] ↦ a d [ x y ] x\mapsto adx, y\mapsto ady, [xy]\mapsto ad[xy] x↦adx,y↦ady,[xy]↦ad[xy] give an operation a d [ x y ] = [ a d x a d y ] ad[xy]=[adx ady] ad[xy]=[adxady]in a d L adL adL, then a d L ≅ L adL\cong L adL≅L because of [ a d x a d y ] = a d [ x y ] = a d x [adxady]=ad[xy]=adx [adxady]=ad[xy]=adx

  4. Verify the assertions made in (1.2) about t ( n , F ) , δ ( n , F ) , n ( n , F ) t(n,F),\delta(n,F),n(n,F) t(n,F),δ(n,F),n(n,F), and compute the dimension of each algebra, by exhibiting bases.
    (i) t ( n , F ) , n ( n , F ) t(n,F),n(n,F) t(n,F),n(n,F)and δ ( n , F ) \delta(n,F) δ(n,F) are closed under the bracket.
    If A ∈ t ( n , F ) A\in t(n,F) A∈t(n,F), B ∈ t ( n , F ) B\in t(n,F) B∈t(n,F), then [ A , B ] = A B − B A [A,B]=AB-BA [A,B]=AB−BA also lies in t ( n , F ) t(n,F) t(n,F)
    If A ∈ n ( n , F ) A\in n(n,F) A∈n(n,F), B ∈ n ( n , F ) B\in n(n,F) B∈n(n,F), then [ A , B ] = A B − B A [A,B]=AB-BA [A,B]=AB−BA also lies in n ( n , F ) n(n,F) n(n,F)
    If A ∈ δ ( n , F ) A\in \delta(n,F) A∈δ(n,F), B ∈ δ ( n , F ) B\in \delta(n,F) B∈δ(n,F), then [ A , B ] = A B − B A [A,B]=AB-BA [A,B]=AB−BA also lies in δ ( n , F ) \delta(n,F) δ(n,F)
    (ii) A ∈ δ ( n , F ) A \in \delta(n,F) A∈δ(n,F), B ∈ n ( n , F ) B \in n(n,F) B∈n(n,F), [ A B ] = A B − B A [AB]=AB-BA [AB]=AB−BA is also a strictly upper matrix
    (iii) If A i ∈ t ( n , F ) A_{i} \in t(n,F) Ai​∈t(n,F), i=1,2 A i = B i + C i A_{i}=B_{i}+C_{i} Ai​=Bi​+Ci​, where B i ∈ δ ( n , F ) B_{i} \in \delta(n,F) Bi​∈δ(n,F), C i ∈ n ( n , F ) C_{i}\in n(n,F) Ci​∈n(n,F) [ A 1 , A 2 ] = [ B 1 + C 1 , B 2 + C 2 ] = [ B 1 B 2 ] + [ B 1 C 2 ] + [ C 1 B 2 ] + [ C 1 C 2 ] = B 1 B 2 − B 2 B 1 + B 1 C 2 − C 2 B 1 + C 1 B 2 − B 2 C 1 + C 1 C 2 − C 2 C 1 ∈ n ( n , F ) [A_{1},A_{2}]=[B_{1}+C_{1},B_{2}+C_{2}]=[B_{1}B_{2}]+[B_{1}C_{2}]+[C_{1}B_{2}]+[C_{1}C_{2}]=B_{1}B_{2}-B_{2}B_{1}+B_{1}C_{2}-C_{2}B_{1}+C_{1}B_{2}-B_{2}C_{1}+C_{1}C_{2}-C_{2}C_{1} \in n(n,F) [A1​,A2​]=[B1​+C1​,B2​+C2​]=[B1​B2​]+[B1​C2​]+[C1​B2​]+[C1​C2​]=B1​B2​−B2​B1​+B1​C2​−C2​B1​+C1​B2​−B2​C1​+C1​C2​−C2​C1​∈n(n,F)
    for δ ( n , F ) \delta(n,F) δ(n,F), we take all the diagonal matrices e i i e_{ii} eii​, 1 ⩽ i ⩽ n 1 \leqslant i \leqslant n 1⩽i⩽n n in number
    for n ( n , F ) n(n,F) n(n,F), we take all the matrices e i j e_{ij} eij​, $ 1 \leqslant i \leq j \leqslant n$, n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n−1)​ in number\
    and t ( n , F ) t(n,F) t(n,F) is the direct sum of δ ( n , F ) \delta(n,F) δ(n,F) and n ( n , F ) n(n,F) n(n,F) as space, so d i m ( t ( n , F ) ) = d i m ( δ ( n , F ) ) + d i m ( n ( n , F ) ) = n + n ( n − 1 ) 2 dim(t(n,F))=dim(\delta(n,F))+dim(n(n,F))=n+\frac{n(n-1)}{2} dim(t(n,F))=dim(δ(n,F))+dim(n(n,F))=n+2n(n−1)​

  5. Let x ∈ g l ( n , F ) x\in gl(n,F) x∈gl(n,F) have n n n distinct eigenvalues a 1 , … a n a_{1},\dots a_{n} a1​,…an​ in F F F. Prove that the eigenvalues of a d x ad x adx are precisely the n 2 n^2 n2 scalars a i − a j ( 1 ⩽ i , j ⩽ n ) a_{i}-a_{j} (1 \leqslant i,j\leqslant n) ai​−aj​(1⩽i,j⩽n), which of course need not be distinct.
    proof
    We can find a suitable basis such that the matrix of x x x on this basis is diag ( a 1 , … a n ) (a_{1},\dots a_{n}) (a1​,…an​), and let e i j , 1 ⩽ i , j ⩽ n e_{ij}, 1 \leqslant i,j \leqslant n eij​,1⩽i,j⩽n be the standard basis of g l ( n , F ) gl(n,F) gl(n,F), and a d x ( e i j ) = [ x , e i j ] = x e i j − e i j x = ( a 1 ⋱ a n ) ( 1 ) − ( 1 ) ( a 1 ⋱ a n ) = ( ⋱ a i ⋱ ) − ( ⋱ a j ⋱ ) = ( ⋱ a i − a j ⋱ ) = ( a i − a j ) e i j adx(e_{ij})=[x,e_{ij}]=xe_{ij}-e_{ij}x=\begin{pmatrix} a_{1}& & \\ &\ddots& \\ & & a_{n} \end{pmatrix} \begin{pmatrix} & & &\\& & 1\\& & & \end{pmatrix}-\begin{pmatrix} & & &\\& & 1\\& & & \end{pmatrix}\begin{pmatrix} a_{1}& & \\ &\ddots& \\ & & a_{n} \end{pmatrix}=\begin{pmatrix} \ddots & &\\& & a_{i}\\& & \ddots \end{pmatrix} -\begin{pmatrix} \ddots & &\\& & a_{j}\\& & \ddots \end{pmatrix}=\begin{pmatrix} \ddots & &\\& & a_{i}-a_{j}\\& & \ddots \end{pmatrix}=(a_{i}-a_{j})e_{ij} adx(eij​)=[x,eij​]=xeij​−eij​x=⎝⎛​a1​​⋱​an​​⎠⎞​⎝⎛​​​1​​⎠⎞​−⎝⎛​​​1​​⎠⎞​⎝⎛​a1​​⋱​an​​⎠⎞​=⎝⎛​⋱​​ai​⋱​⎠⎞​−⎝⎛​⋱​​aj​⋱​⎠⎞​=⎝⎛​⋱​​ai​−aj​⋱​⎠⎞​=(ai​−aj​)eij​

  6. Let s ( n , F ) s(n,F) s(n,F) denote the scalar matrices(=scalar multiples of the identity) in g l ( n , F ) gl(n,F) gl(n,F). If char F is 0 0 0 or else a prime not diving n n n, prove that g l ( n , F ) = s l ( n , F ) + s ( n , F ) gl(n,F)=sl(n,F)+s(n,F) gl(n,F)=sl(n,F)+s(n,F) (direct sum of vector spaces), with [ s ( n , F ) , g l ( n , F ) ] = 0 [s(n,F),gl(n,F)]=0 [s(n,F),gl(n,F)]=0.
    proof
    A ∈ s l ( n , F ) , B = a E ∈ s ( n , F ) , [ A , B ] = A B − B A = a A − a A = 0 , a ∈ F A\in sl(n,F), B=aE\in s(n,F), [A,B]=AB-BA=aA-aA=0, a\in F A∈sl(n,F),B=aE∈s(n,F),[A,B]=AB−BA=aA−aA=0,a∈F, what`s more d i m ( s l ( n , F ) ) + d i m ( s ( n , F ) ) = n 2 − 1 + 1 = n 2 = d i m ( g l ( n , F ) ) dim(sl(n,F))+dim(s(n,F))=n^2-1+1=n^2=dim(gl(n,F)) dim(sl(n,F))+dim(s(n,F))=n2−1+1=n2=dim(gl(n,F)), so g l ( n , F ) = s l ( n , F ) + s ( n , F ) gl(n,F)=sl(n,F)+s(n,F) gl(n,F)=sl(n,F)+s(n,F)

  7. Verify the stated deimension of D l D_{l} Dl​
    Since s x = − x t s sx=-x^ts sx=−xts, where x = ( m n p q ) x=\begin{pmatrix} m &n\\p&q \end{pmatrix} x=(mp​nq​), s = ( 0 I l I l 0 ) s=\begin{pmatrix} 0 &I_{l}\\ I_{l} &0 \end{pmatrix} s=(0Il​​Il​0​), we have ( 0 I l I l 0 ) \begin{pmatrix} 0 &I_{l}\\ I_{l} &0 \end{pmatrix} (0Il​​Il​0​) ( m n p q ) \begin{pmatrix} m &n\\ p &q \end{pmatrix} (mp​nq​)= − ( m t p t n t q t ) -\begin{pmatrix} m^t &p^t\\ n^t &q^t\end{pmatrix} −(mtnt​ptqt​) ( 0 I l I l 0 ) \begin{pmatrix} 0 &I_{l}\\I_{l} &0 \end{pmatrix} (0Il​​Il​0​), which induces p = − p t , q = − m t , n = − n t p=-p^t, q=-m^t, n=-n^t p=−pt,q=−mt,n=−nt, since m = − q t m=-q^t m=−qt, we take e i i − e l + i   l + i e_{ii}-e_{l+i\ l+i} eii​−el+i l+i​, l l l in number; e i   j − e i + l   j + l t e_{i\ j}-e_{i+l\ j+l}^t ei j​−ei+l j+lt​, l 2 − l l^2-l l2−l in number; since n = − n t n=-n^t n=−nt , we take e i   j + l − e j   i + l , 1 ⩽ i ≠ j ⩽ l , 1 / 2 l ( l − 1 ) e_{i\ j+l}-e_{j\ i+l}, 1\leqslant i\neq j\leqslant l, 1/2l(l-1) ei j+l​−ej i+l​,1⩽i​=j⩽l,1/2l(l−1) in number, similar p = − p t p=-p^t p=−pt, 1 / 2 l ( l − 1 ) 1/2l(l-1) 1/2l(l−1) in number, so the total number of basis elements is l + l 2 − l + 1 / 2 l ( l − 1 ) + 1 / 2 l ( l − 1 ) = 2 l 2 − l l+l^2-l+1/2l(l-1)+1/2l(l-1)=2l^2-l l+l2−l+1/2l(l−1)+1/2l(l−1)=2l2−l.

  8. When char F = 0 F=0 F=0, show that each classical algebra L = A l , B l , C l , o r D l L=A_{l}, B_{l}, C_{l}, or D_{l} L=Al​,Bl​,Cl​,orDl​ is equal to [ L L ] [LL] [LL].
    proof
    Let x 1 , … x l x_{1},\dots x_{l} x1​,…xl​ be the basis of L ( A l , B l , C l , o r D l ) L(A_{l}, B_{l}, C_{l}, or D_{l}) L(Al​,Bl​,Cl​,orDl​), [ L L ] = { [ x i x j ] = ∑ k = 1 l a i j x k , x i , x j ∈ L } [LL]=\{[x_{i}x_{j}]=\sum\limits_{k=1}^{l}a_{ij}x_{k}, x_{i},x_{j}\in L\} [LL]={[xi​xj​]=k=1∑l​aij​xk​,xi​,xj​∈L}, dim [ L L ] = l [LL]=l [LL]=l

  9. For small values of ℓ \ell ℓ, isomorphisms occur among certain of the classical algebra. Show that $ A_{l}, B_{l}, C_{l}$ are isomorphic, while D 1 D_{1} D1​ is the one dimensional Lie algebra. Show that B 2 B_{2} B2​ is isomorphic to C 2 , D 3 C_{2}, D_{3} C2​,D3​ to A 3 A_{3} A3​, What can you say about D 2 D_{2} D2​?
    Since dim A l = ( l + 1 ) 2 − 1 A_{l}=(l+1)^2-1 Al​=(l+1)2−1, dim B l = 2 l 2 + l B_{l}=2l^2+l Bl​=2l2+l, dim C l = 2 l 2 − l C_{l}=2l^2-l Cl​=2l2−l, dim D l = 2 l 2 − l D_{l}=2l^2-l Dl​=2l2−l, dim A 1 A_{1} A1​=dim B 1 B_{1} B1​=dim C 1 = 3 C_{1}=3 C1​=3, dim D 1 = 1 D_{1}=1 D1​=1, dim B 2 B_{2} B2​=dim C 2 = 10 C_{2}=10 C2​=10, dim D 3 D_{3} D3​=dim A 3 = 15 A_{3}=15 A3​=15, while Dim D 2 = 6 D_{2}=6 D2​=6

  10. Verify that the commutator of two derivations of an F F F-algebra is again a derivation, whereas the ordinary product need not be.
    proof
    If δ \delta δ, δ ′ \mathop{{\delta}'} δ′ ∈ D e r U \in Der\mathscr{U} ∈DerU, a , b ∈ U a,b\in \mathscr{U} a,b∈U,
      [ δ , δ ′ ] ( a b ) \ [\delta,\delta'](ab)  [δ,δ′](ab)= ( δ δ ′ − δ ′ δ ) ( a b ) = δ δ ′ ( a b ) − δ ′ δ ( a b ) = a δ δ ′ ( b ) + δ δ ′ ( a ) b − a δ ′ δ ( b ) − δ ′ δ ( a ) b = a ( δ δ ′ ( b ) − δ ′ δ ( b ) ) + ( δ δ ′ ( a ) − δ ′ δ ( a ) ) b = a [ δ δ ′ ] ( b ) + [ δ δ ′ ] ( a ) b (\delta\mathop{{\delta}'}-\mathop{{\delta}'}\delta)(ab)= \delta\mathop{{\delta}'}(ab)-\mathop{{\delta}'}\delta(ab)= a\delta\mathop{{\delta}'}(b)+\delta\mathop{{\delta}'}(a)b-a\mathop{{\delta}'}\delta(b)-\mathop{{\delta}'}\delta(a)b= a(\delta\delta'(b)-\delta'\delta(b))+(\delta\delta'(a)-\delta'\delta(a))b=a[\delta\delta'](b)+[\delta\delta'](a)b (δδ′−δ′δ)(ab)=δδ′(ab)−δ′δ(ab)=aδδ′(b)+δδ′(a)b−aδ′δ(b)−δ′δ(a)b=a(δδ′(b)−δ′δ(b))+(δδ′(a)−δ′δ(a))b=a[δδ′](b)+[δδ′](a)b
    while δ δ ′ ( a b ) = δ ( a δ ′ ( b ) + δ ′ ( a ) b ) = δ ( a δ ′ ( b ) ) + δ ( δ ′ ( a ) b ) = a δ δ ′ ( b ) + δ ( a ) δ ′ ( b ) + δ ′ ( a ) δ ( b ) + δ δ ′ ( a ) b ≠ a δ δ ′ ( b ) + δ δ ′ ( a ) b \delta\mathop{{\delta}'}(ab)=\delta(a\mathop{{\delta}'}(b)+\mathop{{\delta}'}(a)b)= \delta(a\mathop{{\delta}'}(b))+\delta(\mathop{{\delta}'}(a)b)= a\delta\mathop{{\delta}'}(b)+\delta(a)\mathop{{\delta}'}(b)+\mathop{{\delta}'}(a)\delta(b)+\delta\mathop{{\delta}'}(a)b\neq a\delta\mathop{{\delta}'}(b)+\delta\mathop{{\delta}'}(a)b δδ′(ab)=δ(aδ′(b)+δ′(a)b)=δ(aδ′(b))+δ(δ′(a)b)=aδδ′(b)+δ(a)δ′(b)+δ′(a)δ(b)+δδ′(a)b​=aδδ′(b)+δδ′(a)b

  11. Let L L L be a Lie algebra and let x ∈ L x\in L x∈L. Prove that the subspace of L L L spanned by the eigenvectors of a d x ad x adx is a subalgebra.
    proof
    Let v 1 , … v l v_{1},\dots v_{l} v1​,…vl​ be the eigenvectors of a d x ad x adx belong to eigenvalues a i , … a l a_{i},\dots a_{l} ai​,…al​, i.e. a d x ( v i ) = a i v i adx(v_{i})=a_{i}v_{i} adx(vi​)=ai​vi​, 1 ⩽ i ⩽ l 1\leqslant i \leqslant l 1⩽i⩽l, a d x ( [ v i v j ] ) = [ x , [ v i v j ] ] = [ v i [ x v j ] ] − [ v j [ x v i ] ] = [ v i , a j v j ] − [ v j , a i v i ] = a j [ v i v j ] + a i [ v i v j ] = ( a i + a j ) [ v i v j ] adx([v_{i} v_{j}])=[x,[v_{i}v_{j}]]=[v_{i}[xv_{j}]]-[v_{j}[xv_{i}]]=[v_{i},a_{j}v_{j}]-[v_{j},a_{i}v_{i}]=a_{j}[v_{i}v_{j}]+a_{i}[v_{i}v_{j}]=(a_{i}+a_{j})[v_{i}v_{j}] adx([vi​vj​])=[x,[vi​vj​]]=[vi​[xvj​]]−[vj​[xvi​]]=[vi​,aj​vj​]−[vj​,ai​vi​]=aj​[vi​vj​]+ai​[vi​vj​]=(ai​+aj​)[vi​vj​]

在这里插入图片描述

标签:dim,adx,导学,xy,pmatrix,examples,delta,Definitions,mathop
来源: https://blog.51cto.com/u_15255081/2870566

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有