ICode9

精准搜索请尝试: 精确搜索
首页 > 系统相关> 文章详细

linux i2c 驱动一

2021-09-21 18:00:27  阅读:240  来源: 互联网

标签:attr temp dev static linux 驱动 i2c data struct



系列文章目录

1、linux i2c 驱动一

2、linux i2c 驱动二


目录

系列文章目录

文章目录​

前言

一、i2c协议简述

二、linux 下 i2c驱动框架

1.首先掌握如何使用

2.理解原理

 三、实例

1、设备树

2、驱动代码

总结



前言

最近在看VFS和汇编相关的东西,整的有点头大,好多东西没来得急整理。

本次主要想总结下串行总线iic,其实iic和spi都是低速串行总线,一般传感器(温度,光模块,eeprom等)都会挂载在iic总线下,是经常使用操作有比较简单的总线。

SPI一般都会挂载一下ad 类(如RF设备 adc9009) 时钟芯片(如 ad9543)  GPS LCD 等都会用到SPI

本来准备一次性写完发现东西越写越多,这次就写硬件原理 驱动简介  驱动代码

下一节写 iic调试方式,内核iic框架分析(个人觉得这部分了解就好,因为不了解VFS 设备驱动总线不太好融会贯通)。


提示:以下是本篇文章正文内容,下面案例仅供参考 ,有任何问题欢迎指出。


一、i2c协议简述

具体这个协议怎么来的百度讲的很清楚,我就说一下i2c协议硬件上连线和对设备访问如何访问。

iic原理:

网上找了个图画的挺好,有三个设备 从机1 从机2 从机3;  R 是上拉电阻 iic总线就是 SDA(串行数据总线) SCL(串行时钟总线),主控制芯片和从设备就通过SCL和SDA相连接;

既然Rp上拉电阻那么空闲时 SCL和SDA就是高电平;或者SCL SDA没有接从设备时也是高电平。

1、是怎么通过SCL SDA通信呢?

2、这么多从机,主控设备如何知道要和那个设备通信呢?

带着问题来看:

随便找个原理图看看:  TI公司的TMP401温感芯片

芯片资料可以去官网下载:  TMP401 数据表, 产品信息与支持 | TI.com.cn     第7节

根据原理图可以看到 SCL  SDA 分别接在了 我们板子上的 I2C1_SCL  I2C1_SDA,是板子上i2c总线;

 一般芯片的datesheet 支持 IIC或者SPI都会有这么一节, Programming  这个就是介绍总线协议的,会包含读写时序图  起始结束等信号持续时间设置参数等等。

有一段话至关重要: 就是串行总线地址,其实就是你的设备地址啦。就像我们原理图上都已经写好了)0x4c,这个有什么用呢?

 这样的,iic通信都是主控制器发起的,无论都还是写,我们写驱动预先会吧从设备的设备地址保存,当主控制器需要和指定的设备通信时就在总线上发送这个地址如(0x4c),那么所有的设备都会收到这个(0x4c)的数据,但是只有是0x4c的这个设备他才会给一个回应(术语ACK),这样就算和主控制器建立了链接,可以发送数据了。这就是我上面提到的时序图,来看看吧。

 这个图就是写操作的时序图。可以看到 每一次主控制器和从机交互一共有九个时钟(字节)参与,

前1-7 表示设备的地址1001100 第8位读写位(1表示读 0 表示写),此时主控制器就发送完第一个字节数据,等待匹配的从机回应, 就是ACK BY Device 这一位是从设备发送的。如果匹配成功后,主控制发送第二个字节就是我们需要发送的数据,数据每个芯片不同可能是8位或者16位等,发送完后等待从机回应ACK。这就是一次数据传输了。当然数据又其实结束信号,这个对于单片机调试可能会用,对于linux调试一般比较少,看一下芯片手册时序图这个就能理解了。

上面的两个问题也就解释了, 

1、是怎么通过SCL SDA通信呢?

由主控制器发起向从机发送地址,从机反馈回应,然后主控制在发送数据 ,从机回应 依次循环,直到接收到停止信号。停止信号 sda 从低到高的一个跳变沿表示。

2、这么多从机,主控设备如何知道要和那个设备通信呢?

通过主控设备发送从机的设备地址, 如果从机回复了ACK那么就算匹配成功。空闲时SCL和SDA都是高电平,当主机发送完地址后,主控制器会拉高SDA至于空闲状态,这个时候从设备的ACK会拉低总线那么其他设备就没办法操作了,一旦SDA被拉低就代表是忙碌状态。

以上是iic硬件或者基本的原理;


二、linux 下 i2c驱动框架


1.首先掌握如何使用

  步骤:

1、配置设备树

2、注册iic设备驱动到内核  一般使用module_i2c_driver(static struct i2c_driver);

3、设置 struct i2c_driver 结构体和 设备树匹配

4、定义一个自己的结构体,在i2c_driver ->probe函数中分配空间和初始化。

5、多种方式

        1-1、 注册一个字符设备,通过字符设备的 fops-> read write ioctl中实现对 设备的读写控制。

        1-2、注册一个hwmon设备(一般用于温感等),通过内核提供的接口devm_hwmon_device_register_with_groups,在/sys/class/下创建属性文件,提供show  store两个属性供用户空间访问。


2.理解原理

1、module_i2c_driver(MY_IIC_DRV)  等于  定义入口出口函数

         i2c_add_driver(MY_IIC_DRV);    i2c_del_driver(MY_IIC_DRV);

2、 struct i2c_driver 向内核注册驱动的结构体。

static struct i2c_driver tmp401_driver = {
	.class		= I2C_CLASS_HWMON,     //所属类,如果不适用 hwmon 方式不写
	.driver = {                        // 驱动,用来匹配设备树中定义的设备
		.name	= "tmp401",
		.of_match_table = of_match_ptr(tmp401_of_match),
	},
	.probe		= tmp401_probe,        //设备和驱动匹配成功后调用这个函数
	.id_table	= tmp401_id,           //用来初始化board_info
	.detect		= tmp401_detect,       //探测 设备是否存在,就是发送设备地址到总线各个设备
	.address_list	= normal_i2c,      //存放 设备地址
};

3、我们需要实现 tmp401_probe  tmp401_detect函数 如果使用字符设备实现读写的话大体框架如下,读写函数中实现对设备的操作即可。

struct IIC_myData{
    struct i2c_client *client;  // 发送和接受的接口在这里存放
    struct mutex update_lock;   //锁
    u8 status;                  //一些标志状态
	u8 data;                  // 读写数据
    u8 flag;                   //     
};

struct IIC_myData  * my_data;
int major_ret ;

static const struct file_operations capi_fops =
{
	.owner		= THIS_MODULE,
	.read		= myiic_read,
	.write		= myiic_write,
	.unlocked_ioctl	= myiic_unlocked_ioctl,
	.open		= myiic_open,
	.release	= myiic_release,
};

static int tmp401_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{

    /* 分配自己定义的结构体 */
    my_data = devm_kzalloc(client->dev, sizeof(struct IIC_myData), GFP_KERNEL);
    /* 初始化 */    
    my_data->client = client;
    mutex_init(&my_data->update_lock);
    .....

    /* 注册字符设备  创建fops*/
	major_ret = register_chrdev(0, "myiic", &myiic_fops);
    //创建设备类
   	myiic_class = class_create(THIS_MODULE, "myiicClass");

	device_create(myiic_class, NULL, MKDEV(major_ret, 0), NULL, "myiicDev");
}

/* 之后实现 读写 打开等函数即可 */


 三、实例

1、设备树

 tmp401: tmp401@4c { /* u23 */
        compatible = "ti,tmp401";   //用来和驱动匹配的名字
        reg = <0x4c>;               //设备地址
    };


    /* 环境温度 temp1_input */
	lm75_4f: lm75@4f {
		compatible = "lm75";
		reg = <0x4f>;
	};

2、驱动代码

 使用第二种方式,使用HWMON方式实现

#include <linux/module.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>

/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4c, 0x4d,
	0x4e, 0x4f, I2C_CLIENT_END };

enum chips { tmp401, tmp411, tmp431, tmp432, tmp435, tmp461 };

/*
 * The TMP401 registers, note some registers have different addresses for
 * reading and writing
 */
#define TMP401_STATUS				0x02
#define TMP401_CONFIG_READ			0x03
#define TMP401_CONFIG_WRITE			0x09
#define TMP401_CONVERSION_RATE_READ		0x04
#define TMP401_CONVERSION_RATE_WRITE		0x0A
#define TMP401_TEMP_CRIT_HYST			0x21
#define TMP401_MANUFACTURER_ID_REG		0xFE
#define TMP401_DEVICE_ID_REG			0xFF

static const u8 TMP401_TEMP_MSB_READ[7][2] = {
	{ 0x00, 0x01 },	/* temp */
	{ 0x06, 0x08 },	/* low limit */
	{ 0x05, 0x07 },	/* high limit */
	{ 0x20, 0x19 },	/* therm (crit) limit */
	{ 0x30, 0x34 },	/* lowest */
	{ 0x32, 0x36 },	/* highest */
	{ 0, 0x11 },	/* offset */
};

static const u8 TMP401_TEMP_MSB_WRITE[7][2] = {
	{ 0, 0 },	/* temp (unused) */
	{ 0x0C, 0x0E },	/* low limit */
	{ 0x0B, 0x0D },	/* high limit */
	{ 0x20, 0x19 },	/* therm (crit) limit */
	{ 0x30, 0x34 },	/* lowest */
	{ 0x32, 0x36 },	/* highest */
	{ 0, 0x11 },	/* offset */
};

static const u8 TMP432_TEMP_MSB_READ[4][3] = {
	{ 0x00, 0x01, 0x23 },	/* temp */
	{ 0x06, 0x08, 0x16 },	/* low limit */
	{ 0x05, 0x07, 0x15 },	/* high limit */
	{ 0x20, 0x19, 0x1A },	/* therm (crit) limit */
};

static const u8 TMP432_TEMP_MSB_WRITE[4][3] = {
	{ 0, 0, 0 },		/* temp  - unused */
	{ 0x0C, 0x0E, 0x16 },	/* low limit */
	{ 0x0B, 0x0D, 0x15 },	/* high limit */
	{ 0x20, 0x19, 0x1A },	/* therm (crit) limit */
};

/* [0] = fault, [1] = low, [2] = high, [3] = therm/crit */
static const u8 TMP432_STATUS_REG[] = {
	0x1b, 0x36, 0x35, 0x37 };

/* Flags */
#define TMP401_CONFIG_RANGE			BIT(2)
#define TMP401_CONFIG_SHUTDOWN			BIT(6)
#define TMP401_STATUS_LOCAL_CRIT		BIT(0)
#define TMP401_STATUS_REMOTE_CRIT		BIT(1)
#define TMP401_STATUS_REMOTE_OPEN		BIT(2)
#define TMP401_STATUS_REMOTE_LOW		BIT(3)
#define TMP401_STATUS_REMOTE_HIGH		BIT(4)
#define TMP401_STATUS_LOCAL_LOW			BIT(5)
#define TMP401_STATUS_LOCAL_HIGH		BIT(6)

/* On TMP432, each status has its own register */
#define TMP432_STATUS_LOCAL			BIT(0)
#define TMP432_STATUS_REMOTE1			BIT(1)
#define TMP432_STATUS_REMOTE2			BIT(2)

/* Manufacturer / Device ID's */
#define TMP401_MANUFACTURER_ID			0x55
#define TMP401_DEVICE_ID			0x11
#define TMP411A_DEVICE_ID			0x12
#define TMP411B_DEVICE_ID			0x13
#define TMP411C_DEVICE_ID			0x10
#define TMP431_DEVICE_ID			0x31
#define TMP432_DEVICE_ID			0x32
#define TMP435_DEVICE_ID			0x35

/*
 * Driver data (common to all clients)
 */

static const struct i2c_device_id tmp401_id[] = {
	{ "tmp401", tmp401 },
	{ "tmp411", tmp411 },
	{ "tmp431", tmp431 },
	{ "tmp432", tmp432 },
	{ "tmp435", tmp435 },
	{ "tmp461", tmp461 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, tmp401_id);

static const struct of_device_id tmp401_of_match[] = {
	{
		.compatible = "ti,tmp401",  //这个是匹配设备树中的compatible字段,要保持一致
		.data = (void *)tmp401		//私有数据;
	},
	{ },
};
MODULE_DEVICE_TABLE(of, tmp401_of_match);

/*
 * Client data (each client gets its own)
 */

struct tmp401_data {
	struct i2c_client *client;
	const struct attribute_group *groups[3];
	struct mutex update_lock;
	char valid; /* zero until following fields are valid */
	unsigned long last_updated; /* in jiffies */
	enum chips kind;

	unsigned int update_interval;	/* in milliseconds */

	/* register values */
	u8 status[4];
	u8 config;
	u16 temp[7][3];
	u8 temp_crit_hyst;
};

/*
 * Sysfs attr show / store functions
 */

static int tmp401_register_to_temp(u16 reg, u8 config)
{
	int temp = reg;

	if (config & TMP401_CONFIG_RANGE)  //正负温度 测量范围不同区分
		temp -= 64 * 256;

	return DIV_ROUND_CLOSEST(temp * 125, 32);
}

static u16 tmp401_temp_to_register(long temp, u8 config, int zbits)
{
	if (config & TMP401_CONFIG_RANGE) {
		temp = clamp_val(temp, -64000, 191000);
		temp += 64000;
	} else
		temp = clamp_val(temp, 0, 127000);

	return DIV_ROUND_CLOSEST(temp * (1 << (8 - zbits)), 1000) << zbits;
}
//实现温度读取  读取温度的寄存器地址存放在TMP401_TEMP_MSB_READ TMP432_TEMP_MSB_READ 数组中
static int tmp401_update_device_reg16(struct i2c_client *client,
				      struct tmp401_data *data)
{
	int i, j, val;
	int num_regs = data->kind == tmp411 ? 6 : 4;
	int num_sensors = data->kind == tmp432 ? 3 : 2;

	for (i = 0; i < num_sensors; i++) {		/* local / r1 / r2 */
		for (j = 0; j < num_regs; j++) {	/* temp / low / ... */
			u8 regaddr;

			regaddr = data->kind == tmp432 ?
						TMP432_TEMP_MSB_READ[j][i] :
						TMP401_TEMP_MSB_READ[j][i];
			if (j == 3) { /* crit is msb only */
				val = i2c_smbus_read_byte_data(client, regaddr);
			} else {
				val = i2c_smbus_read_word_swapped(client,
								  regaddr);
			}
			if (val < 0)
				return val;

			data->temp[j][i] = j == 3 ? val << 8 : val;
		}
	}
	return 0;
}

static struct tmp401_data *tmp401_update_device(struct device *dev)
{
	struct tmp401_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	struct tmp401_data *ret = data;
	int i, val;
	unsigned long next_update;

	mutex_lock(&data->update_lock);

	next_update = data->last_updated +
		      msecs_to_jiffies(data->update_interval);
	if (time_after(jiffies, next_update) || !data->valid) {
		if (data->kind != tmp432) {
			/*
			 * The driver uses the TMP432 status format internally.
			 * Convert status to TMP432 format for other chips.
			 */
			val = i2c_smbus_read_byte_data(client, TMP401_STATUS);
			if (val < 0) {
				ret = ERR_PTR(val);
				goto abort;
			}
			data->status[0] =
			  (val & TMP401_STATUS_REMOTE_OPEN) >> 1;
			data->status[1] =
			  ((val & TMP401_STATUS_REMOTE_LOW) >> 2) |
			  ((val & TMP401_STATUS_LOCAL_LOW) >> 5);
			data->status[2] =
			  ((val & TMP401_STATUS_REMOTE_HIGH) >> 3) |
			  ((val & TMP401_STATUS_LOCAL_HIGH) >> 6);
			data->status[3] = val & (TMP401_STATUS_LOCAL_CRIT
						| TMP401_STATUS_REMOTE_CRIT);
		} else {
			for (i = 0; i < ARRAY_SIZE(data->status); i++) {
				val = i2c_smbus_read_byte_data(client,
							TMP432_STATUS_REG[i]);
				if (val < 0) {
					ret = ERR_PTR(val);
					goto abort;
				}
				data->status[i] = val;
			}
		}

		val = i2c_smbus_read_byte_data(client, TMP401_CONFIG_READ);
		if (val < 0) {
			ret = ERR_PTR(val);
			goto abort;
		}
		data->config = val;
		val = tmp401_update_device_reg16(client, data);
		if (val < 0) {
			ret = ERR_PTR(val);
			goto abort;
		}
		val = i2c_smbus_read_byte_data(client, TMP401_TEMP_CRIT_HYST);
		if (val < 0) {
			ret = ERR_PTR(val);
			goto abort;
		}
		data->temp_crit_hyst = val;

		data->last_updated = jiffies;
		data->valid = 1;
	}

abort:
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_temp(struct device *dev,
			 struct device_attribute *devattr, char *buf)
{
	//SENSOR_DEVICE_ATTR_2(0, 0);最后两个参数表示nr 和index
	int nr = to_sensor_dev_attr_2(devattr)->nr;
	int index = to_sensor_dev_attr_2(devattr)->index;
	struct tmp401_data *data = tmp401_update_device(dev);

	if (IS_ERR(data))
		return PTR_ERR(data);

	return sprintf(buf, "%d\n",
		tmp401_register_to_temp(data->temp[nr][index], data->config));
}

static ssize_t show_temp_crit_hyst(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int temp, index = to_sensor_dev_attr(devattr)->index;
	struct tmp401_data *data = tmp401_update_device(dev);

	if (IS_ERR(data))
		return PTR_ERR(data);

	mutex_lock(&data->update_lock);
	temp = tmp401_register_to_temp(data->temp[3][index], data->config);
	temp -= data->temp_crit_hyst * 1000;
	mutex_unlock(&data->update_lock);

	return sprintf(buf, "%d\n", temp);
}

static ssize_t show_status(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	int nr = to_sensor_dev_attr_2(devattr)->nr;
	int mask = to_sensor_dev_attr_2(devattr)->index;
	struct tmp401_data *data = tmp401_update_device(dev);

	if (IS_ERR(data))
		return PTR_ERR(data);

	return sprintf(buf, "%d\n", !!(data->status[nr] & mask));
}

static ssize_t store_temp(struct device *dev, struct device_attribute *devattr,
			  const char *buf, size_t count)
{
	int nr = to_sensor_dev_attr_2(devattr)->nr;
	int index = to_sensor_dev_attr_2(devattr)->index;
	struct tmp401_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long val;
	u16 reg;
	u8 regaddr;

	if (kstrtol(buf, 10, &val))
		return -EINVAL;

	reg = tmp401_temp_to_register(val, data->config, nr == 3 ? 8 : 4);

	mutex_lock(&data->update_lock);

	regaddr = data->kind == tmp432 ? TMP432_TEMP_MSB_WRITE[nr][index]
				       : TMP401_TEMP_MSB_WRITE[nr][index];
	if (nr == 3) { /* crit is msb only */
		i2c_smbus_write_byte_data(client, regaddr, reg >> 8);
	} else {
		/* Hardware expects big endian data --> use _swapped */
		i2c_smbus_write_word_swapped(client, regaddr, reg);
	}
	data->temp[nr][index] = reg;

	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t store_temp_crit_hyst(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	int temp, index = to_sensor_dev_attr(devattr)->index;
	struct tmp401_data *data = tmp401_update_device(dev);
	long val;
	u8 reg;

	if (IS_ERR(data))
		return PTR_ERR(data);

	if (kstrtol(buf, 10, &val))
		return -EINVAL;

	if (data->config & TMP401_CONFIG_RANGE)
		val = clamp_val(val, -64000, 191000);
	else
		val = clamp_val(val, 0, 127000);

	mutex_lock(&data->update_lock);
	temp = tmp401_register_to_temp(data->temp[3][index], data->config);
	val = clamp_val(val, temp - 255000, temp);
	reg = ((temp - val) + 500) / 1000;

	i2c_smbus_write_byte_data(data->client, TMP401_TEMP_CRIT_HYST,
				  reg);

	data->temp_crit_hyst = reg;

	mutex_unlock(&data->update_lock);

	return count;
}

/*
 * Resets the historical measurements of minimum and maximum temperatures.
 * This is done by writing any value to any of the minimum/maximum registers
 * (0x30-0x37).
 */
static ssize_t reset_temp_history(struct device *dev,
	struct device_attribute	*devattr, const char *buf, size_t count)
{
	struct tmp401_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long val;

	if (kstrtol(buf, 10, &val))
		return -EINVAL;

	if (val != 1) {
		dev_err(dev,
			"temp_reset_history value %ld not supported. Use 1 to reset the history!\n",
			val);
		return -EINVAL;
	}
	mutex_lock(&data->update_lock);
	i2c_smbus_write_byte_data(client, TMP401_TEMP_MSB_WRITE[5][0], val);
	data->valid = 0;
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t update_interval_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct tmp401_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", data->update_interval);
}

static ssize_t update_interval_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct tmp401_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long val;
	int err, rate;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	/*
	 * For valid rates, interval can be calculated as
	 *	interval = (1 << (7 - rate)) * 125;
	 * Rounded rate is therefore
	 *	rate = 7 - __fls(interval * 4 / (125 * 3));
	 * Use clamp_val() to avoid overflows, and to ensure valid input
	 * for __fls.
	 */
	val = clamp_val(val, 125, 16000);
	rate = 7 - __fls(val * 4 / (125 * 3));
	mutex_lock(&data->update_lock);
	i2c_smbus_write_byte_data(client, TMP401_CONVERSION_RATE_WRITE, rate);
	data->update_interval = (1 << (7 - rate)) * 125;
	mutex_unlock(&data->update_lock);

	return count;
}

static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 0);
static SENSOR_DEVICE_ATTR_2(temp1_min, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 1, 0);
static SENSOR_DEVICE_ATTR_2(temp1_max, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 2, 0);
static SENSOR_DEVICE_ATTR_2(temp1_crit, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 3, 0);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO,
			  show_temp_crit_hyst, store_temp_crit_hyst, 0);
static SENSOR_DEVICE_ATTR_2(temp1_min_alarm, S_IRUGO, show_status, NULL,
			    1, TMP432_STATUS_LOCAL);
static SENSOR_DEVICE_ATTR_2(temp1_max_alarm, S_IRUGO, show_status, NULL,
			    2, TMP432_STATUS_LOCAL);
static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, show_status, NULL,
			    3, TMP432_STATUS_LOCAL);
static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 0, 1);
static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 1, 1);
static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 2, 1);
static SENSOR_DEVICE_ATTR_2(temp2_crit, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 3, 1);
static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temp_crit_hyst,
			  NULL, 1);
static SENSOR_DEVICE_ATTR_2(temp2_fault, S_IRUGO, show_status, NULL,
			    0, TMP432_STATUS_REMOTE1);
static SENSOR_DEVICE_ATTR_2(temp2_min_alarm, S_IRUGO, show_status, NULL,
			    1, TMP432_STATUS_REMOTE1);
static SENSOR_DEVICE_ATTR_2(temp2_max_alarm, S_IRUGO, show_status, NULL,
			    2, TMP432_STATUS_REMOTE1);
static SENSOR_DEVICE_ATTR_2(temp2_crit_alarm, S_IRUGO, show_status, NULL,
			    3, TMP432_STATUS_REMOTE1);

static DEVICE_ATTR_RW(update_interval);

static struct attribute *tmp401_attributes[] = {
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_min.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_crit.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp2_min.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp2_crit.dev_attr.attr,
	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
	&sensor_dev_attr_temp2_fault.dev_attr.attr,
	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,

	&dev_attr_update_interval.attr,

	NULL
};

static const struct attribute_group tmp401_group = {
	.attrs = tmp401_attributes,
};

/*
 * Additional features of the TMP411 chip.
 * The TMP411 stores the minimum and maximum
 * temperature measured since power-on, chip-reset, or
 * minimum and maximum register reset for both the local
 * and remote channels.
 */
static SENSOR_DEVICE_ATTR_2(temp1_lowest, S_IRUGO, show_temp, NULL, 4, 0);
static SENSOR_DEVICE_ATTR_2(temp1_highest, S_IRUGO, show_temp, NULL, 5, 0);
static SENSOR_DEVICE_ATTR_2(temp2_lowest, S_IRUGO, show_temp, NULL, 4, 1);
static SENSOR_DEVICE_ATTR_2(temp2_highest, S_IRUGO, show_temp, NULL, 5, 1);
static SENSOR_DEVICE_ATTR(temp_reset_history, S_IWUSR, NULL, reset_temp_history,
			  0);

static struct attribute *tmp411_attributes[] = {
	&sensor_dev_attr_temp1_highest.dev_attr.attr,
	&sensor_dev_attr_temp1_lowest.dev_attr.attr,
	&sensor_dev_attr_temp2_highest.dev_attr.attr,
	&sensor_dev_attr_temp2_lowest.dev_attr.attr,
	&sensor_dev_attr_temp_reset_history.dev_attr.attr,
	NULL
};

static const struct attribute_group tmp411_group = {
	.attrs = tmp411_attributes,
};

static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp, NULL, 0, 2);
static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 1, 2);
static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 2, 2);
static SENSOR_DEVICE_ATTR_2(temp3_crit, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 3, 2);
static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temp_crit_hyst,
			  NULL, 2);
static SENSOR_DEVICE_ATTR_2(temp3_fault, S_IRUGO, show_status, NULL,
			    0, TMP432_STATUS_REMOTE2);
static SENSOR_DEVICE_ATTR_2(temp3_min_alarm, S_IRUGO, show_status, NULL,
			    1, TMP432_STATUS_REMOTE2);
static SENSOR_DEVICE_ATTR_2(temp3_max_alarm, S_IRUGO, show_status, NULL,
			    2, TMP432_STATUS_REMOTE2);
static SENSOR_DEVICE_ATTR_2(temp3_crit_alarm, S_IRUGO, show_status, NULL,
			    3, TMP432_STATUS_REMOTE2);

static struct attribute *tmp432_attributes[] = {
	&sensor_dev_attr_temp3_input.dev_attr.attr,
	&sensor_dev_attr_temp3_min.dev_attr.attr,
	&sensor_dev_attr_temp3_max.dev_attr.attr,
	&sensor_dev_attr_temp3_crit.dev_attr.attr,
	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
	&sensor_dev_attr_temp3_fault.dev_attr.attr,
	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,

	NULL
};

static const struct attribute_group tmp432_group = {
	.attrs = tmp432_attributes,
};

/*
 * Additional features of the TMP461 chip.
 * The TMP461 temperature offset for the remote channel.
 * show_temp 实现读取  store_temp实现存储
 */
static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp,
			    store_temp, 6, 1);

//创建属性列表
static struct attribute *tmp461_attributes[] = {
	&sensor_dev_attr_temp2_offset.dev_attr.attr,
	NULL
};
//属性创建组 
static const struct attribute_group tmp461_group = {
	.attrs = tmp461_attributes,
};

/*
 * Begin non sysfs callback code (aka Real code)
 */

static int tmp401_init_client(struct tmp401_data *data,
			      struct i2c_client *client)
{
	int config, config_orig, status = 0;

	/* Set the conversion rate to 2 Hz */
	i2c_smbus_write_byte_data(client, TMP401_CONVERSION_RATE_WRITE, 5);
	data->update_interval = 500;

	/* Start conversions (disable shutdown if necessary) */
	config = i2c_smbus_read_byte_data(client, TMP401_CONFIG_READ);
	if (config < 0)
		return config;

	config_orig = config;
	config &= ~TMP401_CONFIG_SHUTDOWN;
	config |= (1<<2);  			//修改测量范围 默认只能测量正温度
	if (config != config_orig)
		status = i2c_smbus_write_byte_data(client,
						   TMP401_CONFIG_WRITE,
						   config);

	return status;
}

static int tmp401_detect(struct i2c_client *client,
			 struct i2c_board_info *info)
{
	enum chips kind;
	//i2c_adapter 这个结构很重要是在注册设备是定义这个结构,包含了算法和锁得操作
	struct i2c_adapter *adapter = client->adapter;
	u8 reg;
	
	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -ENODEV;

	/* Detect and identify the chip */
	reg = i2c_smbus_read_byte_data(client, TMP401_MANUFACTURER_ID_REG);
	if (reg != TMP401_MANUFACTURER_ID)
		return -ENODEV;

	reg = i2c_smbus_read_byte_data(client, TMP401_DEVICE_ID_REG);

	switch (reg) {
	case TMP401_DEVICE_ID:
		if (client->addr != 0x4c)
			return -ENODEV;
		kind = tmp401;
		break;
	case TMP411A_DEVICE_ID:
		if (client->addr != 0x4c)
			return -ENODEV;
		kind = tmp411;
		break;
	case TMP411B_DEVICE_ID:
		if (client->addr != 0x4d)
			return -ENODEV;
		kind = tmp411;
		break;
	case TMP411C_DEVICE_ID:
		if (client->addr != 0x4e)
			return -ENODEV;
		kind = tmp411;
		break;
	case TMP431_DEVICE_ID:
		if (client->addr != 0x4c && client->addr != 0x4d)
			return -ENODEV;
		kind = tmp431;
		break;
	case TMP432_DEVICE_ID:
		if (client->addr != 0x4c && client->addr != 0x4d)
			return -ENODEV;
		kind = tmp432;
		break;
	case TMP435_DEVICE_ID:
		kind = tmp435;
		break;
	default:
		return -ENODEV;
	}

	reg = i2c_smbus_read_byte_data(client, TMP401_CONFIG_READ);
	if (reg & 0x1b)
		return -ENODEV;

	reg = i2c_smbus_read_byte_data(client, TMP401_CONVERSION_RATE_READ);
	/* Datasheet says: 0x1-0x6 */
	if (reg > 15)
		return -ENODEV;

	strlcpy(info->type, tmp401_id[kind].name, I2C_NAME_SIZE);

	return 0;
}

static int tmp401_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	static const char * const names[] = {
		"TMP401", "TMP411", "TMP431", "TMP432", "TMP435", "TMP461"
	};
	struct device *dev = &client->dev;
	struct device *hwmon_dev;
	struct tmp401_data *data;
	int groups = 0, status;
	//给私有数据分配空间
	data = devm_kzalloc(dev, sizeof(struct tmp401_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;
	//初始化私有数据 和锁
	data->client = client;
	mutex_init(&data->update_lock);
	data->kind = id->driver_data;

	/* Initialize the TMP401 chip */
	status = tmp401_init_client(data, client);
	if (status < 0)
		return status;

	/* Register sysfs hooks */
	data->groups[groups++] = &tmp401_group;

	/* Register additional tmp411 sysfs hooks */
	if (data->kind == tmp411)
		data->groups[groups++] = &tmp411_group;

	/* Register additional tmp432 sysfs hooks */
	if (data->kind == tmp432)
		data->groups[groups++] = &tmp432_group;

	if (data->kind == tmp461)
		data->groups[groups++] = &tmp461_group;
	//注册HWMON设备 创建属性文件
	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data, data->groups);
	if (IS_ERR(hwmon_dev))
		return PTR_ERR(hwmon_dev);

	dev_info(dev, "Detected TI %s chip\n", names[data->kind]);

	return 0;
}

//定义一个iic驱动结构
static struct i2c_driver tmp401_driver = {
	//声明hwmon类i2c.h中还定义了 I2C_CLASS_DDC  I2C_CLASS_SPD
	.class		= I2C_CLASS_HWMON,  
	.driver = {
		.name	= "tmp401",   //驱动名称就不说了
		.of_match_table = of_match_ptr(tmp401_of_match),
	},
	.probe		= tmp401_probe,
	.id_table	= tmp401_id,		//多个设备的时候来存放设备设备名列表	
	.detect		= tmp401_detect,    //探测函数,调用probe之前先发送设备地址到总线上等待从机反馈
	.address_list	= normal_i2c,   //存放从机设备地址列表 比如0x4c
};

module_i2c_driver(tmp401_driver);


总结

篇幅有点长,本次掌握iic使用方式。内核中如何初始化设备树中iic设备 还有如何使得设备和驱动匹配调用probe函数的分析放在下一小节中分析。

标签:attr,temp,dev,static,linux,驱动,i2c,data,struct
来源: https://blog.csdn.net/c4679281314/article/details/120401070

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有