ICode9

精准搜索请尝试: 精确搜索
首页 > 系统相关> 文章详细

利用共享内存实现比NCCL更快的集合通信

2021-08-09 11:31:06  阅读:228  来源: 互联网

标签:NCCL copy 训练 reduce 通信 AllReduce 更快 共享内存


作者:曹彬 | 旷视 MegEngine 架构师

简介

从 2080Ti 这一代显卡开始,所有的民用游戏卡都取消了 P2P copy,导致训练速度显著的变慢。针对这种情况下的单机多卡训练,MegEngine 中实现了更快的集合通信算法,对多个不同的网络训练相对于 NCCL 有 3% 到 10% 的加速效果。

MegEngine v1.5 版本,可以手动切换集合通信后端为 shm(默认是 nccl),只需要改一个参数。(由于 shm 模式对 CPU 有额外的占用,且只有在特定卡下才能提高效率,因此并没有默认打开)

gm = GradManager()
gm.attach(model.parameters(), callbacks=[dist.make_allreduce_cb("sum", backend="shm")])
目前只实现了单机版本,多机暂不支持

背景

在大规模训练中,数据并行是最简单最常见的训练方式,每张卡运行完全一样的网络结构,然后加上参数同步就可以了。

对于 数据并行的参数同步,目前有两种常用的方法,Parameter Server 和 Gradient AllReduce:

  • Parameter Server 方案需要额外机器作为参数服务器来更新参数,而且中心式的通讯方式对带宽的压力很大,增加训练机器的同时通信量也线性增加;
  • 而 AllReduce 方案只是参与训练的机器之间互相同步参数,不需要额外的机器,可扩展性好。

MegEngine 目前也是使用 AllReduce 方案作为数据并行的参数同步方案。而在 AllReduce 方案中,大家目前常用的是 NCCL,Nvidia 自家写的 GPU 集合通讯库,通信效率很高。

看到这里,可以得到一个结论,数据并行的情况,用 NCCL 通讯库能达到不错的效果。

到这里就结束了?当然不是,在 2080Ti 8 卡训练的情况下,在多个网络下,我们相对 NCCL 有 3% 到 10% 的性能提升。(以 2080Ti 为例子是因为游戏卡不支持 P2P 通信,相对来说通信较慢,通信时间长,节省通信时间能获得的收益较大)

这是怎么做到的呢,我们一步一步来分析(以下数据都是用 megengine.utils.profiler 导出,相关文档在 profiler文档)。

通常我们是在 backward 阶段同时做 gradient 的同步,我们来看单卡的 backward 耗时,只有 164ms:

图 (单卡 ResNet50 训练)

再来看 8 卡训练时 backward 的耗时,增长到了 203ms,比单卡的情况下多了 39ms:

确实,backward 时间变长了不少,可是为什么?我们有没有可能消除它?

1)为什么

一句话:NCCL AllReduce 占用了 cuda 计算资源,所以计算变慢。

具体原因是 NCCL AllReduce 对应的 cuda kernel 需要既做通信又做计算,所以占用了计算对应需要的计算资源,但是大部分时间都花在了通信上,导致计算资源的利用率不够高。

2)能不能消除它

当然是可以的,cuda 计算和通信是可以并行的,让计算和通信运行在两个不同的 cuda stream 上,就可以并行起来,这一点在 cuda 开发者文档中有提到。

3)实际测试计算和通信并行的例子

stream0 进行矩阵乘法运算,stream1 进行拷贝,前后矩阵乘法的速度没有受到影响:

实现思路

这里先介绍一下 AllReduce 的两种实现方法。

1)ReduceScatter + AllGather

Ring AllReduce 就是用的 ReduceScatter + AllGather 的模式:首先第一轮通信在各个节点上计算出部分和,然后第二轮通信把部分和聚集一下得到最终结果。

2)Reduce + Broadcast

Reduce + Broadcast 的方式像 Parameter Server,会先在一个节点计算出完整的累加和,然后再广播到各个节点上。

新的算法采用的是 Reduce + Broadcast 的方法,首先将数据全部拷贝到 cpu(使用 Shared Memory),然后由 cpu 进行累加,再拷贝回 gpu。

由于直接拷贝累加没有把计算和通信 overlap 起来,我们还采用了类似 Ring AllReduce 的分块策略,让通信和计算充分 overlap,如下图所示。

因为用到了 Shared Memory,所以把这个后端简称为 SHM。

实现效果

1)算子性能

相对 NCCL 来说,SHM 的延迟稍微高了一些,带宽低了一些,数据大一些的情况可以达到 NCCL 的 90% 左右的性能。

SHM 性能需要在数据包大的情况发挥,和 ParamPack 策略搭配能最大发挥 SHM 的作用(在 MegEngine 中 distributed.make_allreduce_cb 中使用了 ParamPack 策略, 默认打包大小为 10M)。ParamPack 策略是指将参数对应的梯度打包进行发送,减少小包发送,以减少通信延迟增加带宽利用率。

2)实际训练效果

继续使用 ResNet50 8卡训练的例子,SHM 与 NCCL 相比,backward 时间快了近 30ms(203ms->174ms)。

Shared Memory AllReduce 的不足之处/后续改进

1)cpu 占用多

因为占用了 cpu 资源做 reduce 运算,所以在 cpu 资源紧张的情况下会比较慢,需要确定 cpu 资源是否够用再进行使用。

2)额外通信成本

因为 copy 和 reduce 之间有数据依赖关系,copy需要等待上一次的reduce完成才能开始,reduce要等待copy数据就位才能开始,所以中间插入了信号量的同步,引入了额外的通信成本,在分块越多的情况越明显。

3)多进程负载均衡

各个进程的 copy 和 reduce 速度不一致导致了进度不同步的问题,会造成多余的等待时间,根据实际运行速度进行分配任务性能会有进一步的提升。

4)更多的 overlap

目前只用到了 copy 和 reduce 之间的 overlap,但是其实 h2d 和 d2h 拷贝也是可以 overlap 起来的,可以有进一步加速。

标签:NCCL,copy,训练,reduce,通信,AllReduce,更快,共享内存
来源: https://www.cnblogs.com/megengine/p/15117829.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有