ICode9

精准搜索请尝试: 精确搜索
首页 > 系统相关> 文章详细

Linux Netfilter框架分析

2021-07-11 12:00:09  阅读:257  来源: 互联网

标签:chain 框架 IP 跟踪 conntrack Linux 数据包 连接 Netfilter


目录

Netfilter框架

netfilter是Linux底层包处理框架,在协议栈中提供了若干hook点,可以用于对数据包进行过滤、修改、地址转换(SNAT/DNAT)等处理。

Netfilter的5个hook点

netfilter在内核协议栈的不同位置实现了5个hook点:

---> PRE_ROUTING ---> [Routing Decision] ---> FORWARD ---> [Routing Decision] ---> POST_ROUTING --->
				 	|                                				 ^
				 	|                                				 |
					v                                 				 |
					LOCAL_IN                        			LOCAL_OUT
				 	|                                				 ^
					|                                 				 |
					v                                				 |
				            		LOCAL PROCESS
  • NF_IP_PRE_ROUTING:数据包一进入协议栈即触发,在进行任何路由判断之前
  • NF_IP_LOCAL_IN:经过路由判断,如果数据包目的是本机,将触发该hook
  • NF_IP_FORWARD:经过路由判断,如果数据包目的是其他主机,将触发该hook转发
  • NF_IP_LOCAL_OUT:本机准备发送的数据包,在进入协议栈后触发该hook
  • NF_IP_POST_ROUTING:准备发出去的包或转发的包,经过路由判断后,离开网卡前的最后一个hook点
// include/uapi/linux/netfilter_ipv4.h

/* IP Hooks */
/* After promisc drops, checksum checks. */
#define NF_IP_PRE_ROUTING	0
/* If the packet is destined for this box. */
#define NF_IP_LOCAL_IN		1
/* If the packet is destined for another interface. */
#define NF_IP_FORWARD		2
/* Packets coming from a local process. */
#define NF_IP_LOCAL_OUT		3
/* Packets about to hit the wire. */
#define NF_IP_POST_ROUTING	4
#define NF_IP_NUMHOOKS		5

ip_tables等内核模块可以通过向这5个hook点注册处理函数(handler),当数据包经过hook点时,调用回调函数handler对数据包进行处理。

netfilter协议栈数据流分析

Wikipedia上关于netfilter在协议栈中的架构图
image

连接跟踪conntrack

  • conntracknetfilter实现的连接跟踪机制,是NATiptables状态匹配(-m state)的基础,conntrack依赖的内核模块为nf_conntrack
  • conntrack在内核中的位置有两处:PREROUTINGOUTPUT之前,进入主机的所有数据包会通过PREROUTING处的conntrack,主机本地进程产生的数据包对外发出时会通过OUTPUT处的conntrack。从netfilter协议栈架构图可以看出,conntrack所处的位置非常靠前,仅位于raw表之后,如果raw将数据包标记为NOTRACK,则conntrack不会跟踪该数据包连接。
  • conntrack通过连接跟踪表来维护所有的连接信息,当有数据包通过conntrack时,通过判断该连接为一条新建的连接,还是已有连接的响应信息,对于新建连接在跟踪表中新建一条连接条目,对于已有连接信息则更新跟踪表中对于连接的状态。

conntrack连接跟踪表条目

数据包经过conntrack时,conntrack会提取相关信息来唯一标识一条连接,对于TCP/UDP协议,一条连接信息通过源IP、源端口、目的IP、目的端口确定,对于ICMP协议,由type、code、id字段确定。
在用户态可以使用命令conntrack -L来查看系统上的连接跟踪表:

ipv4     2 tcp      6 33 SYN_SENT src=172.16.200.119 dst=172.16.202.12 sport=54786 dport=10051 [UNREPLIED] src=172.16.202.12 dst=172.16.200.119 sport=10051 dport=54786 mark=0 zone=0 use=2

如上是一条conntrack条目,它代表当前已跟踪到的某个连接,conntrack维护的所有信息都包含在这个条目中,通过它就可以知道某个连接处于什么状态

  • 此连接使用ipv4协议,是一条tcp连接(tcp的协议类型代码是6)
  • 33是这条conntrack条目在当前时间点的生存时间(每个conntrack条目都会有生存时间,从设置值开始倒计时,倒计时完后此条目将被清除),可以使用sysctl -a |grep conntrack | grep timeout查看不同协议不同状态下生存时间设置值,当然这些设置值都可以调整,注意若后续有收到属于此连接的数据包,则此生存时间将被重置(重新从设置值开始倒计时),并且状态改变,生存时间设置值也会响应改为新状态的值
  • SYN_SENT是到此刻为止conntrack跟踪到的这个连接的状态(内核角度),SYN_SENT表示这个连接只在一个方向发送了一初始TCP SYN包,还未看到响应的SYN+ACK包(只有tcp才会有这个字段)。
  • src=172.16.200.119 dst=172.16.202.12 sport=54786 dport=10051是从数据包中提取的此连接的源目地址、源目端口,是conntrack首次看到此数据包时候的信息。
  • [UNREPLIED]说明此刻为止这个连接还没有收到任何响应,当一个连接已收到响应时,[UNREPLIED]标志就会被移除
  • 接下来的src=172.16.202.12 dst=172.16.200.119 sport=10051 dport=54786地址和端口和前面是相反的,这部分不是数据包中带有的信息,是conntrack填充的信息,代表conntrack希望收到的响应包信息。意思是若后续conntrack跟踪到某个数据包信息与此部分匹配,则此数据包就是此连接的响应数据包。注意这部分确定了conntrack如何判断响应包(tcp/udp),icmp是依据另外几个字段

连接跟踪表大小

连接跟踪表能够存放的conntrack条目的最大值,即系统运行的最大连接跟踪数记作CONNTRACK_MAX
在内核中,连接跟踪表示一个二维数组结构的哈希表,哈希表的大小记作HASHSIZE,哈希表的每一项称为bucket,因此哈希表中有HASHSIZEbucket,每个bucket包含一个链表,每个链表能够存放若干个conntrack条目(bucket size)。

因此,系统允许的最大连接跟踪数为:
CONNTRACK_MAX = HASHSIZE * bucket size

#查看系统当前最大连接跟踪数CONNTRACK_MAX
sysctl -a | grep net.netfilter.nf_conntrack_max
#net.netfilter.nf_conntrack_max = 3203072

#查看当前连接跟踪表大小HASHSIZE
sysctl -a | grep net.netfilter.nf_conntrack_buckets
#400384
#或者这样
cat /sys/module/nf_conntrack/parameters/hashsize
#400384 

这两个的比值即为bucket size

对于新收到的数据包,内核使用如下步骤判断该数据包是否属于已有连接:

  • 内核提取此数据包信息(源IP、源端口、目的IP、目的端口、协议号)进行hash计算得到hash值,在哈希表中以此hash值做索引进行查找,查找结果即为该数据包所属的bucket。这一步计算时间很短
  • 遍历对应的bucket,查找是否能匹配到conntrack条目。bucket size越大,遍历时间越长

管理连接跟踪表

在用户态,使用工具conntrack实现对连接跟踪表的增删改查操作

#查看连接跟踪表所有条目  
conntrack -L
#清除连接跟踪表
conntrack -F
#删除连接跟踪表中所有源地址是1.2.3.4的条目
conntrack -D -s 1.2.3.4

iptables

iptables是Linux系统上的主机防火墙,依赖于netfilter框架实现,在内核态通过ip_tables内核模块与netfilter交互。
iptables由table和chain组成,以前是四表五链,新增后已经不止四表了。可以说table是chain的集合,chain是iptables规则的集合。

iptables table

iptables规则通过table来组织,根据需要做的操作分为Filter Table、NAT Table、Mangle Table、Raw Table、Security Table等。

  • Filter Table:过滤功能,判断一个数据包是否应该放行
  • NAT Table:地址转换
  • Mangle Table:修改包的IP头,如TTL、服务类型
  • Raw Table:决定数据包是否被连接跟踪机制处理,对于不需要跟踪的数据包可以打上NOTRACK标签
  • Security Table:标记SELinux

iptables chain

在每个table内,规则进一步组织成chain,5个chain与netfilter的5个hook点一一对应:

  • PREROUTING: 由NF_IP_PRE_ROUTING 触发
  • INPUT: 由NF_IP_LOCAL_IN 触发
  • FORWARD: 由NF_IP_FORWARD 触发
  • OUTPUT: 由NF_IP_LOCAL_OUT 触发
  • POSTROUTING: 由NF_IP_POST_ROUTING 触发

chain的优先级:

  • 收到的目的为本机的包:PREROUTING->INPUT
  • 收到的目标为其他主机的包:PREROUTING->FORWARD->POSTROUTING
  • 本机产生准备发出的包:OUTPUT->POSTROUTING

table和chain的关系

以上说明了iptables有哪些table和哪些chain,接下来讨论两个问题:

  1. 每个table里面都有哪些chain
    下面表格展示了table和chain的关系,横向是table,纵向是chain,标记Y的表示table里有这个chain,例如让raw表中有PREROUTING和OUTPUT两个chain。
  2. 注册到同一个hook的不同chain执行的优先级问题,例如3个table中都有PREROUTING这条chain,应该按照怎样的顺序调用他们?
    对应到列从上往下,就是hook点触发时chain的调用顺序。当一个包触发netfilter hook点时,处理过程将沿着列从上向下执行
table/chain PREROUTING INPUT FORWARD OUTPUT POSTROUTING
[routing decision] Y
raw Y Y
连接跟踪 Y Y
mangle Y Y Y Y Y
nat(DNAT) Y Y
[routing decision] Y Y
filter Y Y Y
security Y Y Y
nat(SNAT) Y Y

iptables状态匹配

conntrack可以跟踪数据包的状态,iptables使用-m state进行状态匹配正是使用了conntrack连接跟踪表中标记的状态。
数据包内核态状态比较多,映射到用户空间有5种状态:

  • NEW:新到达的包为合法包并且在连接跟踪表中关联不到,则为这个包创建一条新连接条目
  • ESTABLISHED:接收到的包为已有连接的响应包,则将NEW状态改为ESTABLISHED状态。对于TCP连接来说,就是跟SYN包对应的SYN/ACK包,对于UDP、ICMP来说就是与源相反的包
  • RELATED:接收到的包不属于已有连接,但是和已有连接存在一定的关系,称为辅助连接,例如 FTP 数据传输连接,或者是其他协议试图建立连接时的 ICMP 应答包
  • INVALID:包无法识别等原因,标记为非法
  • UNTRACKED:raw表中标记为NOTRACK

参考

https://opengers.github.io/openstack/openstack-base-netfilter-framework-overview/#conntrack条目
http://arthurchiao.art/blog/conntrack-design-and-implementation-zh/#5-个-hook-点
https://arthurchiao.art/blog/deep-dive-into-iptables-and-netfilter-arch-zh/#chain-遍历优先级

eBPF开发:
https://duo.com/labs/tech-notes/writing-an-xdp-network-filter-with-ebpf
https://github.com/cloudflare/cloudflare-blog/blob/master/2018-07-dropping-packets/xdp-drop-ebpf.c
https://gist.github.com/fntlnz/f6638d59e0e39f0993219684d9bf57d3
https://davidlovezoe.club/wordpress/archives/937

标签:chain,框架,IP,跟踪,conntrack,Linux,数据包,连接,Netfilter
来源: https://www.cnblogs.com/init0ne/p/14602887.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有