ICode9

精准搜索请尝试: 精确搜索
首页 > 数据库> 文章详细

db_bench_sqlite3

2021-11-19 13:35:27  阅读:200  来源: 互联网

标签:status std db stmt bench FLAGS sqlite3


点击查看代码
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <sqlite3.h>

#include <cstdio>
#include <cstdlib>

#include "util/histogram.h"
#include "util/random.h"
#include "util/testutil.h"

// Comma-separated list of operations to run in the specified order
//   Actual benchmarks:
//
//   fillseq       -- write N values in sequential key order in async mode
//   fillseqsync   -- write N/100 values in sequential key order in sync mode
//   fillseqbatch  -- batch write N values in sequential key order in async mode
//   fillrandom    -- write N values in random key order in async mode
//   fillrandsync  -- write N/100 values in random key order in sync mode
//   fillrandbatch -- batch write N values in sequential key order in async mode
//   overwrite     -- overwrite N values in random key order in async mode
//   fillrand100K  -- write N/1000 100K values in random order in async mode
//   fillseq100K   -- write N/1000 100K values in sequential order in async mode
//   readseq       -- read N times sequentially
//   readrandom    -- read N times in random order
//   readrand100K  -- read N/1000 100K values in sequential order in async mode
static const char* FLAGS_benchmarks =
    "fillseq,"
    "fillseqsync,"
    "fillseqbatch,"
    "fillrandom,"
    "fillrandsync,"
    "fillrandbatch,"
    "overwrite,"
    "overwritebatch,"
    "readrandom,"
    "readseq,"
    "fillrand100K,"
    "fillseq100K,"
    "readseq,"
    "readrand100K,";

// Number of key/values to place in database
static int FLAGS_num = 1000000;

// Number of read operations to do.  If negative, do FLAGS_num reads.
static int FLAGS_reads = -1;

// Size of each value
static int FLAGS_value_size = 100;

// Print histogram of operation timings
static bool FLAGS_histogram = false;

// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;

// Page size. Default 1 KB.
static int FLAGS_page_size = 1024;

// Number of pages.
// Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB.
static int FLAGS_num_pages = 4096;

// If true, do not destroy the existing database.  If you set this
// flag and also specify a benchmark that wants a fresh database, that
// benchmark will fail.
static bool FLAGS_use_existing_db = false;

// If true, the SQLite table has ROWIDs.
static bool FLAGS_use_rowids = false;

// If true, we allow batch writes to occur
static bool FLAGS_transaction = true;

// If true, we enable Write-Ahead Logging
static bool FLAGS_WAL_enabled = true;

// Use the db with the following name.
static const char* FLAGS_db = nullptr;

inline static void ExecErrorCheck(int status, char* err_msg) {
  if (status != SQLITE_OK) {
    std::fprintf(stderr, "SQL error: %s\n", err_msg);
    sqlite3_free(err_msg);
    std::exit(1);
  }
}

inline static void StepErrorCheck(int status) {
  if (status != SQLITE_DONE) {
    std::fprintf(stderr, "SQL step error: status = %d\n", status);
    std::exit(1);
  }
}

inline static void ErrorCheck(int status) {
  if (status != SQLITE_OK) {
    std::fprintf(stderr, "sqlite3 error: status = %d\n", status);
    std::exit(1);
  }
}

inline static void WalCheckpoint(sqlite3* db_) {
  // Flush all writes to disk
  if (FLAGS_WAL_enabled) {
    sqlite3_wal_checkpoint_v2(db_, nullptr, SQLITE_CHECKPOINT_FULL, nullptr,
                              nullptr);
  }
}

namespace leveldb {

// Helper for quickly generating random data.
namespace {
class RandomGenerator {
 private:
  std::string data_;
  int pos_;

 public:
  RandomGenerator() {
    // We use a limited amount of data over and over again and ensure
    // that it is larger than the compression window (32KB), and also
    // large enough to serve all typical value sizes we want to write.
    Random rnd(301);
    std::string piece;
    while (data_.size() < 1048576) {
      // Add a short fragment that is as compressible as specified
      // by FLAGS_compression_ratio.
      test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
      data_.append(piece);
    }
    pos_ = 0;
  }

  Slice Generate(int len) {
    if (pos_ + len > data_.size()) {
      pos_ = 0;
      assert(len < data_.size());
    }
    pos_ += len;
    return Slice(data_.data() + pos_ - len, len);
  }
};

static Slice TrimSpace(Slice s) {
  int start = 0;
  while (start < s.size() && isspace(s[start])) {
    start++;
  }
  int limit = s.size();
  while (limit > start && isspace(s[limit - 1])) {
    limit--;
  }
  return Slice(s.data() + start, limit - start);
}

}  // namespace

class Benchmark {
 private:
  sqlite3* db_;
  int db_num_;
  int num_;
  int reads_;
  double start_;
  double last_op_finish_;
  int64_t bytes_;
  std::string message_;
  Histogram hist_;
  RandomGenerator gen_;
  Random rand_;

  // State kept for progress messages
  int done_;
  int next_report_;  // When to report next

  void PrintHeader() {
    const int kKeySize = 16;
    PrintEnvironment();
    std::fprintf(stdout, "Keys:       %d bytes each\n", kKeySize);
    std::fprintf(stdout, "Values:     %d bytes each\n", FLAGS_value_size);
    std::fprintf(stdout, "Entries:    %d\n", num_);
    std::fprintf(stdout, "RawSize:    %.1f MB (estimated)\n",
                 ((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_) /
                  1048576.0));
    PrintWarnings();
    std::fprintf(stdout, "------------------------------------------------\n");
  }

  void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
    std::fprintf(
        stdout,
        "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
    std::fprintf(
        stdout,
        "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
  }

  void PrintEnvironment() {
    std::fprintf(stderr, "SQLite:     version %s\n", SQLITE_VERSION);

#if defined(__linux)
    time_t now = time(nullptr);
    std::fprintf(stderr, "Date:       %s",
                 ctime(&now));  // ctime() adds newline

    FILE* cpuinfo = std::fopen("/proc/cpuinfo", "r");
    if (cpuinfo != nullptr) {
      char line[1000];
      int num_cpus = 0;
      std::string cpu_type;
      std::string cache_size;
      while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
        const char* sep = strchr(line, ':');
        if (sep == nullptr) {
          continue;
        }
        Slice key = TrimSpace(Slice(line, sep - 1 - line));
        Slice val = TrimSpace(Slice(sep + 1));
        if (key == "model name") {
          ++num_cpus;
          cpu_type = val.ToString();
        } else if (key == "cache size") {
          cache_size = val.ToString();
        }
      }
      std::fclose(cpuinfo);
      std::fprintf(stderr, "CPU:        %d * %s\n", num_cpus, cpu_type.c_str());
      std::fprintf(stderr, "CPUCache:   %s\n", cache_size.c_str());
    }
#endif
  }

  void Start() {
    start_ = Env::Default()->NowMicros() * 1e-6;
    bytes_ = 0;
    message_.clear();
    last_op_finish_ = start_;
    hist_.Clear();
    done_ = 0;
    next_report_ = 100;
  }

  void FinishedSingleOp() {
    if (FLAGS_histogram) {
      double now = Env::Default()->NowMicros() * 1e-6;
      double micros = (now - last_op_finish_) * 1e6;
      hist_.Add(micros);
      if (micros > 20000) {
        std::fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
        std::fflush(stderr);
      }
      last_op_finish_ = now;
    }

    done_++;
    if (done_ >= next_report_) {
      if (next_report_ < 1000)
        next_report_ += 100;
      else if (next_report_ < 5000)
        next_report_ += 500;
      else if (next_report_ < 10000)
        next_report_ += 1000;
      else if (next_report_ < 50000)
        next_report_ += 5000;
      else if (next_report_ < 100000)
        next_report_ += 10000;
      else if (next_report_ < 500000)
        next_report_ += 50000;
      else
        next_report_ += 100000;
      std::fprintf(stderr, "... finished %d ops%30s\r", done_, "");
      std::fflush(stderr);
    }
  }

  void Stop(const Slice& name) {
    double finish = Env::Default()->NowMicros() * 1e-6;

    // Pretend at least one op was done in case we are running a benchmark
    // that does not call FinishedSingleOp().
    if (done_ < 1) done_ = 1;

    if (bytes_ > 0) {
      char rate[100];
      std::snprintf(rate, sizeof(rate), "%6.1f MB/s",
                    (bytes_ / 1048576.0) / (finish - start_));
      if (!message_.empty()) {
        message_ = std::string(rate) + " " + message_;
      } else {
        message_ = rate;
      }
    }

    std::fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
                 name.ToString().c_str(), (finish - start_) * 1e6 / done_,
                 (message_.empty() ? "" : " "), message_.c_str());
    if (FLAGS_histogram) {
      std::fprintf(stdout, "Microseconds per op:\n%s\n",
                   hist_.ToString().c_str());
    }
    std::fflush(stdout);
  }

 public:
  enum Order { SEQUENTIAL, RANDOM };
  enum DBState { FRESH, EXISTING };

  Benchmark()
      : db_(nullptr),
        db_num_(0),
        num_(FLAGS_num),
        reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
        bytes_(0),
        rand_(301) {
    std::vector<std::string> files;
    std::string test_dir;
    Env::Default()->GetTestDirectory(&test_dir);
    Env::Default()->GetChildren(test_dir, &files);
    if (!FLAGS_use_existing_db) {
      for (int i = 0; i < files.size(); i++) {
        if (Slice(files[i]).starts_with("dbbench_sqlite3")) {
          std::string file_name(test_dir);
          file_name += "/";
          file_name += files[i];
          Env::Default()->RemoveFile(file_name.c_str());
        }
      }
    }
  }

  ~Benchmark() {
    int status = sqlite3_close(db_);
    ErrorCheck(status);
  }

  void Run() {
    PrintHeader();
    Open();

    const char* benchmarks = FLAGS_benchmarks;
    while (benchmarks != nullptr) {
      const char* sep = strchr(benchmarks, ',');
      Slice name;
      if (sep == nullptr) {
        name = benchmarks;
        benchmarks = nullptr;
      } else {
        name = Slice(benchmarks, sep - benchmarks);
        benchmarks = sep + 1;
      }

      bytes_ = 0;
      Start();

      bool known = true;
      bool write_sync = false;
      if (name == Slice("fillseq")) {
        Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillseqbatch")) {
        Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrandom")) {
        Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrandbatch")) {
        Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000);
        WalCheckpoint(db_);
      } else if (name == Slice("overwrite")) {
        Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("overwritebatch")) {
        Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrandsync")) {
        write_sync = true;
        Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillseqsync")) {
        write_sync = true;
        Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrand100K")) {
        Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillseq100K")) {
        Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("readseq")) {
        ReadSequential();
      } else if (name == Slice("readrandom")) {
        Read(RANDOM, 1);
      } else if (name == Slice("readrand100K")) {
        int n = reads_;
        reads_ /= 1000;
        Read(RANDOM, 1);
        reads_ = n;
      } else {
        known = false;
        if (name != Slice()) {  // No error message for empty name
          std::fprintf(stderr, "unknown benchmark '%s'\n",
                       name.ToString().c_str());
        }
      }
      if (known) {
        Stop(name);
      }
    }
  }

  void Open() {
    assert(db_ == nullptr);

    int status;
    char file_name[100];
    char* err_msg = nullptr;
    db_num_++;

    // Open database
    std::string tmp_dir;
    Env::Default()->GetTestDirectory(&tmp_dir);
    std::snprintf(file_name, sizeof(file_name), "%s/dbbench_sqlite3-%d.db",
                  tmp_dir.c_str(), db_num_);
    status = sqlite3_open(file_name, &db_);
    if (status) {
      std::fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_));
      std::exit(1);
    }

    // Change SQLite cache size
    char cache_size[100];
    std::snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d",
                  FLAGS_num_pages);
    status = sqlite3_exec(db_, cache_size, nullptr, nullptr, &err_msg);
    ExecErrorCheck(status, err_msg);

    // FLAGS_page_size is defaulted to 1024
    if (FLAGS_page_size != 1024) {
      char page_size[100];
      std::snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d",
                    FLAGS_page_size);
      status = sqlite3_exec(db_, page_size, nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
    }

    // Change journal mode to WAL if WAL enabled flag is on
    if (FLAGS_WAL_enabled) {
      std::string WAL_stmt = "PRAGMA journal_mode = WAL";

      // LevelDB's default cache size is a combined 4 MB
      std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096";
      status = sqlite3_exec(db_, WAL_stmt.c_str(), nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
      status =
          sqlite3_exec(db_, WAL_checkpoint.c_str(), nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
    }

    // Change locking mode to exclusive and create tables/index for database
    std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE";
    std::string create_stmt =
        "CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))";
    if (!FLAGS_use_rowids) create_stmt += " WITHOUT ROWID";
    std::string stmt_array[] = {locking_stmt, create_stmt};
    int stmt_array_length = sizeof(stmt_array) / sizeof(std::string);
    for (int i = 0; i < stmt_array_length; i++) {
      status =
          sqlite3_exec(db_, stmt_array[i].c_str(), nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
    }
  }

  void Write(bool write_sync, Order order, DBState state, int num_entries,
             int value_size, int entries_per_batch) {
    // Create new database if state == FRESH
    if (state == FRESH) {
      if (FLAGS_use_existing_db) {
        message_ = "skipping (--use_existing_db is true)";
        return;
      }
      sqlite3_close(db_);
      db_ = nullptr;
      Open();
      Start();
    }

    if (num_entries != num_) {
      char msg[100];
      std::snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
      message_ = msg;
    }

    char* err_msg = nullptr;
    int status;

    sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt;
    std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)";
    std::string begin_trans_str = "BEGIN TRANSACTION;";
    std::string end_trans_str = "END TRANSACTION;";

    // Check for synchronous flag in options
    std::string sync_stmt =
        (write_sync) ? "PRAGMA synchronous = FULL" : "PRAGMA synchronous = OFF";
    status = sqlite3_exec(db_, sync_stmt.c_str(), nullptr, nullptr, &err_msg);
    ExecErrorCheck(status, err_msg);

    // Preparing sqlite3 statements
    status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1, &replace_stmt,
                                nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
                                &begin_trans_stmt, nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
                                nullptr);
    ErrorCheck(status);

    bool transaction = (entries_per_batch > 1);
    for (int i = 0; i < num_entries; i += entries_per_batch) {
      // Begin write transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(begin_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(begin_trans_stmt);
        ErrorCheck(status);
      }

      // Create and execute SQL statements
      for (int j = 0; j < entries_per_batch; j++) {
        const char* value = gen_.Generate(value_size).data();

        // Create values for key-value pair
        const int k =
            (order == SEQUENTIAL) ? i + j : (rand_.Next() % num_entries);
        char key[100];
        std::snprintf(key, sizeof(key), "%016d", k);

        // Bind KV values into replace_stmt
        status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC);
        ErrorCheck(status);
        status = sqlite3_bind_blob(replace_stmt, 2, value, value_size,
                                   SQLITE_STATIC);
        ErrorCheck(status);

        // Execute replace_stmt
        bytes_ += value_size + strlen(key);
        status = sqlite3_step(replace_stmt);
        StepErrorCheck(status);

        // Reset SQLite statement for another use
        status = sqlite3_clear_bindings(replace_stmt);
        ErrorCheck(status);
        status = sqlite3_reset(replace_stmt);
        ErrorCheck(status);

        FinishedSingleOp();
      }

      // End write transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(end_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(end_trans_stmt);
        ErrorCheck(status);
      }
    }

    status = sqlite3_finalize(replace_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(begin_trans_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(end_trans_stmt);
    ErrorCheck(status);
  }

  void Read(Order order, int entries_per_batch) {
    int status;
    sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt;

    std::string read_str = "SELECT * FROM test WHERE key = ?";
    std::string begin_trans_str = "BEGIN TRANSACTION;";
    std::string end_trans_str = "END TRANSACTION;";

    // Preparing sqlite3 statements
    status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
                                &begin_trans_stmt, nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
                                nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, nullptr);
    ErrorCheck(status);

    bool transaction = (entries_per_batch > 1);
    for (int i = 0; i < reads_; i += entries_per_batch) {
      // Begin read transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(begin_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(begin_trans_stmt);
        ErrorCheck(status);
      }

      // Create and execute SQL statements
      for (int j = 0; j < entries_per_batch; j++) {
        // Create key value
        char key[100];
        int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_);
        std::snprintf(key, sizeof(key), "%016d", k);

        // Bind key value into read_stmt
        status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC);
        ErrorCheck(status);

        // Execute read statement
        while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW) {
        }
        StepErrorCheck(status);

        // Reset SQLite statement for another use
        status = sqlite3_clear_bindings(read_stmt);
        ErrorCheck(status);
        status = sqlite3_reset(read_stmt);
        ErrorCheck(status);
        FinishedSingleOp();
      }

      // End read transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(end_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(end_trans_stmt);
        ErrorCheck(status);
      }
    }

    status = sqlite3_finalize(read_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(begin_trans_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(end_trans_stmt);
    ErrorCheck(status);
  }

  void ReadSequential() {
    int status;
    sqlite3_stmt* pStmt;
    std::string read_str = "SELECT * FROM test ORDER BY key";

    status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, nullptr);
    ErrorCheck(status);
    for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) {
      bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2);
      FinishedSingleOp();
    }

    status = sqlite3_finalize(pStmt);
    ErrorCheck(status);
  }
};

}  // namespace leveldb

int main(int argc, char** argv) {
  std::string default_db_path;
  for (int i = 1; i < argc; i++) {
    double d;
    int n;
    char junk;
    if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
      FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
    } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_histogram = n;
    } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
      FLAGS_compression_ratio = d;
    } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_use_existing_db = n;
    } else if (sscanf(argv[i], "--use_rowids=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_use_rowids = n;
    } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
      FLAGS_num = n;
    } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
      FLAGS_reads = n;
    } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
      FLAGS_value_size = n;
    } else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) {
      FLAGS_transaction = false;
    } else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) {
      FLAGS_page_size = n;
    } else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) {
      FLAGS_num_pages = n;
    } else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_WAL_enabled = n;
    } else if (strncmp(argv[i], "--db=", 5) == 0) {
      FLAGS_db = argv[i] + 5;
    } else {
      std::fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
      std::exit(1);
    }
  }

  // Choose a location for the test database if none given with --db=<path>
  if (FLAGS_db == nullptr) {
    leveldb::Env::Default()->GetTestDirectory(&default_db_path);
    default_db_path += "/dbbench";
    FLAGS_db = default_db_path.c_str();
  }

  leveldb::Benchmark benchmark;
  benchmark.Run();
  return 0;
}

标签:status,std,db,stmt,bench,FLAGS,sqlite3
来源: https://www.cnblogs.com/kk0716/p/15576726.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有