ICode9

精准搜索请尝试: 精确搜索
首页 > 数据库> 文章详细

Oracle数据库历史性能问题分析:dba_hist_active_sess_history

2021-07-04 10:30:02  阅读:291  来源: 互联网

标签:采样 sample sess 22 03 dba hist session time


如何通过dba_hist_active_sess_history分析数据库历史性能问题

背景

在很多情况下,当数据库发生性能问题的时候,我们并没有机会来收集足够的诊断信息,比如system state dump或者hang analyze,甚至问题发生的时候DBA根本不在场。这给我们诊断问题带来很大的困难。那么在这种情况下,我们是否能在事后收集一些信息来分析问题的原因呢?在Oracle 10G或者更高版本上,答案是肯定的。本文我们将介绍一种通过 dba_hist_active_sess_history 的数据来分析问题的一种方法。

适用于

Oracle 10G或更高版本,本文适用于任何平台。

详情

在Oracle 10G中,我们引入了AWR和ASH采样机制,有一个视图 gv$active_session_history每秒钟将数据库所有节点的Active Session采样一次,而 dba_hist_active_sess_history 则会将 gv$active_session_history 里的数据每10秒采样一次并持久化保存。基于这个特征,我们可以通过分析 dba_hist_active_sess_history 的Session采样情况,来定位问题发生的准确时间范围,并且可以观察每个采样点的top event和top holder。下面通过一个例子来详细说明。

1. Dump出问题期间的ASH数据

为了不影响生产系统,我们可以将问题大概期间的ASH数据export出来在测试机上分析。
基于 dba_hist_active_sess_history 创建一个新表 t_ash,然后将其通过exp/imp导入到测试机。在发生问题的数据库上执行exp:

SQL> conn user/passwd
SQL> create table t_ash as select * from dba_hist_active_sess_history where SAMPLE_TIME between 
TO_TIMESTAMP ('<time_begin>', 'YYYY-MM-DD HH24:MI:SS') and 
TO_TIMESTAMP ('<time_end>', 'YYYY-MM-DD HH24:MI:SS');
$ exp user/passwd file=t_ash.dmp tables=(t_ash) log=t_ash.exp.log

然后导入到测试机:

$ imp user/passwd file=t_ash.dmp log=t_ash.imp.log

2. 验证导出的ASH时间范围

建议采用Oracle SQL Developer来查询以防止输出结果折行不便于观察。

set line 200 pages 1000
col sample_time for a25
col event for a40
alter session set nls_timestamp_format='yyyy-mm-dd hh24:mi:ss.ff';

select
 t.dbid, t.instance_number, min(sample_time), max(sample_time), count(*) session_count
  from t_ash t
 group by t.dbid, t.instance_number
 order by dbid, instance_number;

INSTANCE_NUMBER    MIN(SAMPLE_TIME)    MAX(SAMPLE_TIME)    SESSION_COUNT
1    2015-03-26 21:00:04.278    2015-03-26 22:59:48.387    2171
2    2015-03-26 21:02:12.047    2015-03-26 22:59:42.584    36

从以上输出可知该数据库共2个节点,采样时间共2小时,节点1的采样比节点2要多很多,问题可能发生在节点1上。

3. 确认问题发生的精确时间范围

参考如下脚本:

select
 dbid, instance_number, sample_id, sample_time, count(*) session_count
  from t_ash t
 group by dbid, instance_number, sample_id, sample_time
 order by dbid, instance_number, sample_time;

INSTANCE_NUMBER    SAMPLE_ID    SAMPLE_TIME    SESSION_COUNT
1    36402900    2015-03-26 22:02:50.985    4
1    36402910    2015-03-26 22:03:01.095    1
1    36402920    2015-03-26 22:03:11.195    1
1    36402930    2015-03-26 22:03:21.966    21
1    36402940    2015-03-26 22:03:32.116    102
1    36402950    2015-03-26 22:03:42.226    181
1    36402960    2015-03-26 22:03:52.326    200
1    36402970    2015-03-26 22:04:02.446    227
1    36402980    2015-03-26 22:04:12.566    242
1    36402990    2015-03-26 22:04:22.666    259
1    36403000    2015-03-26 22:04:32.846    289
1    36403010    2015-03-26 22:04:42.966    147
1    36403020    2015-03-26 22:04:53.076    2
1    36403030    2015-03-26 22:05:03.186    4
1    36403040    2015-03-26 22:05:13.296    1
1    36403050    2015-03-26 22:05:23.398    1

注意观察以上输出的每个采样点的active session的数量,数量突然变多往往意味着问题发生了。从以上输出可以确定问题发生的精确时间在 2015-03-26 22:03:21 ~ 22:04:42,问题持续了大约1.5分钟。
注意: 观察以上的输出有无断档,比如某些时间没有采样。

4. 确定每个采样点的 top n event

在这里我们指定的是top 2 event 并且注掉了采样时间以观察所有采样点的情况。如果数据量较多,您也可以通过开启 sample_time 的注释来观察某个时间段的情况。注意最后一列 session_count 指的是该采样点上的等待该event的session数量。

select t.dbid,
       t.sample_id,
       t.sample_time,
       t.instance_number,
       t.event,
       t.session_state,
       t.c session_count
  from (select t.*,
               rank() over(partition by dbid, instance_number, sample_time order by c desc) r
          from (select
                 t.*,
                 count(*) over(partition by dbid, instance_number, sample_time, event) c,
                 row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
                  from t_ash t
                /*where sample_time >
                    to_timestamp('2013-11-17 13:59:00',
                                 'yyyy-mm-dd hh24:mi:ss')
                and sample_time <
                    to_timestamp('2013-11-17 14:10:00',
                                 'yyyy-mm-dd hh24:mi:ss')*/
                ) t
         where r1 = 1) t
 where r < 3
 order by dbid, instance_number, sample_time, r;

SAMPLE_ID    SAMPLE_TIME    INSTANCE_NUMBER    EVENT    SESSION_STATE    SESSION_COUNT
36402900    22:02:50.985    1        ON CPU    3
36402900    22:02:50.985    1    db file sequential read    WAITING    1
36402910    22:03:01.095    1        ON CPU    1
36402920    22:03:11.195    1    db file parallel read    WAITING    1
36402930    22:03:21.966    1    cursor: pin S wait on X    WAITING    11
36402930    22:03:21.966    1    latch: shared pool    WAITING    4
36402940    22:03:32.116    1    cursor: pin S wait on X    WAITING    83
36402940    22:03:32.116    1    SGA: allocation forcing component growth    WAITING    16
36402950    22:03:42.226    1    cursor: pin S wait on X    WAITING    161
36402950    22:03:42.226    1    SGA: allocation forcing component growth    WAITING    17
36402960    22:03:52.326    1    cursor: pin S wait on X    WAITING    177
36402960    22:03:52.326    1    SGA: allocation forcing component growth    WAITING    20
36402970    22:04:02.446    1    cursor: pin S wait on X    WAITING    204
36402970    22:04:02.446    1    SGA: allocation forcing component growth    WAITING    20
36402980    22:04:12.566    1    cursor: pin S wait on X    WAITING    219
36402980    22:04:12.566    1    SGA: allocation forcing component growth    WAITING    20
36402990    22:04:22.666    1    cursor: pin S wait on X    WAITING    236
36402990    22:04:22.666    1    SGA: allocation forcing component growth    WAITING    20
36403000    22:04:32.846    1    cursor: pin S wait on X    WAITING    265
36403000    22:04:32.846    1    SGA: allocation forcing component growth    WAITING    20
36403010    22:04:42.966    1    enq: US - contention    WAITING    69
36403010    22:04:42.966    1    latch: row cache objects    WAITING    56
36403020    22:04:53.076    1    db file scattered read    WAITING    1
36403020    22:04:53.076    1    db file sequential read    WAITING    1

从以上输出我们可以发现问题期间最严重的等待为 cursor: pin S wait on X,高峰期等待该event的session数达到了265个,其次为 SGA: allocation forcing component growth,高峰期session为20个。

注意:

  1. 再次确认以上输出有无断档,是否有某些时间没有采样。
  2. 注意那些 session_state 为 ON CPU 的输出,比较ON CPU的进程个数与您的OS物理CPU的个数,如果接近或者超过物理CPU个数,那么您还需要检查OS当时的CPU资源状况,比如OSWatcher/NMON等工具,高的CPU Run Queue可能引发该问题,当然也可能是问题的结果,需要结合OSWatcher和ASH的时间顺序来验证。

5. 观察每个采样点的等待链

其原理为通过 dba_hist_active_sess_history.blocking_session 记录的holder来通过connect by级联查询,找出最终的holder。在RAC环境中,每个节点的ASH采样的时间很多情况下并不是一致的,因此您可以通过将本SQL的第二段注释的 sample_time 稍作修改让不同节点相差1秒的采样时间可以比较(注意最好也将partition by中的sample_time做相应修改)。该输出中 isleaf=1 的都是最终holder,而 iscycle=1 的代表死锁了(也就是在同一个采样点中a等b,b等c,而c又等a,这种情况如果持续发生,那么尤其值得关注)。采用如下查询能观察到阻塞链。

select
 level                     lv,
 connect_by_isleaf         isleaf,
 connect_by_iscycle        iscycle,
 t.dbid,
 t.sample_id,
 t.sample_time,
 t.instance_number,
 t.session_id,
 t.sql_id,
 t.session_type,
 t.event,
 t.session_state,
 t.blocking_inst_id,
 t.blocking_session,
 t.blocking_session_status
  from t_ash t
/*where sample_time >
    to_timestamp('2013-11-17 13:55:00',
                 'yyyy-mm-dd hh24:mi:ss')
and sample_time <
    to_timestamp('2013-11-17 14:10:00',
                 'yyyy-mm-dd hh24:mi:ss')*/
 start with blocking_session is not null
connect by nocycle
 prior dbid = dbid
       and prior sample_time = sample_time
          /*and ((prior sample_time) - sample_time between interval '-1'
          second and interval '1' second)*/
       and prior blocking_inst_id = instance_number
       and prior blocking_session = session_id
       and prior blocking_session_serial# = session_serial#
 order siblings by dbid, sample_time;

LV    ISLEAF    ISCYCLE    SAMPLE_TIME    INSTANCE_NUMBER    SESSION_ID    SQL_ID    EVENT    SESSION_STATE    BLOCKING_INST_ID    BLOCKING_SESSION    BLOCKING_SESSION_STATUS
1    0    0    22:04:32.846    1    1259    3ajt2htrmb83y    cursor:    WAITING    1    537    VALID
2    1    0    22:04:32.846    1    537    3ajt2htrmb83y    SGA:    WAITING            UNKNOWN

注意为了输出便于阅读,我们将等待event做了简写,下同。从上面的输出可见,在相同的采样点上(22:04:32.846),节点1 session 1259在等待 cursor: pin S wait on X,其被节点1 session 537阻塞,而节点1 session 537又在等待 SGA: allocation forcing component growth,并且ASH没有采集到其holder,因此这里 cursor: pin S wait on X 只是一个表面现象,问题的原因在于 SGA: allocation forcing component growth

6. 基于第5步的原理来找出每个采样点的最终top holder

比如如下SQL列出了每个采样点top 2的blocker session,并且计算了其最终阻塞的session数(参考blocking_session_count)。

select t.lv,
       t.iscycle,
       t.dbid,
       t.sample_id,
       t.sample_time,
       t.instance_number,
       t.session_id,
       t.sql_id,
       t.session_type,
       t.event,
       t.seq#,
       t.session_state,
       t.blocking_inst_id,
       t.blocking_session,
       t.blocking_session_status,
       t.c blocking_session_count
  from (select t.*,
               row_number() over(partition by dbid, instance_number, sample_time order by c desc) r
          from (select t.*,
                       count(*) over(partition by dbid, instance_number, sample_time, session_id) c,
                       row_number() over(partition by dbid, instance_number, sample_time, session_id order by 1) r1
                  from (select
                         level              lv,
                         connect_by_isleaf  isleaf,
                         connect_by_iscycle iscycle,
                         t.*
                          from t_ash t
                        /*where sample_time >
                            to_timestamp('2013-11-17 13:55:00',
                                         'yyyy-mm-dd hh24:mi:ss')
                        and sample_time <
                            to_timestamp('2013-11-17 14:10:00',
                                         'yyyy-mm-dd hh24:mi:ss')*/
                         start with blocking_session is not null
                        connect by nocycle
                         prior dbid = dbid
                               and prior sample_time = sample_time
                                  /*and ((prior sample_time) - sample_time between interval '-1'
                                  second and interval '1' second)*/
                               and prior blocking_inst_id = instance_number
                               and prior blocking_session = session_id
                               and prior
                                    blocking_session_serial# = session_serial#) t
                 where t.isleaf = 1) t
         where r1 = 1) t
 where r < 3
 order by dbid, sample_time, r;

SAMPLE_TIME    INSTANCE_NUMBER    SESSION_ID    SQL_ID    EVENT    SEQ#    SESSION_STATE    BLOCKING_SESSION_STATUS    BLOCKING_SESSION_COUNT
22:03:32.116    1    1136    1p4vyw2jan43d    SGA:    1140    WAITING    UNKNOWN    82
22:03:32.116    1    413    9g51p4bt1n7kz    SGA:    7646    WAITING    UNKNOWN    2
22:03:42.226    1    1136    1p4vyw2jan43d    SGA:    1645    WAITING    UNKNOWN    154
22:03:42.226    1    537    3ajt2htrmb83y    SGA:    48412    WAITING    UNKNOWN    4
22:03:52.326    1    1136    1p4vyw2jan43d    SGA:    2150    WAITING    UNKNOWN    165
22:03:52.326    1    537    3ajt2htrmb83y    SGA:    48917    WAITING    UNKNOWN    8
22:04:02.446    1    1136    1p4vyw2jan43d    SGA:    2656    WAITING    UNKNOWN    184
22:04:02.446    1    537    3ajt2htrmb83y    SGA:    49423    WAITING    UNKNOWN    10
22:04:12.566    1    1136    1p4vyw2jan43d    SGA:    3162    WAITING    UNKNOWN    187
22:04:12.566    1    2472        SGA:    1421    WAITING    UNKNOWN    15
22:04:22.666    1    1136    1p4vyw2jan43d    SGA:    3667    WAITING    UNKNOWN    193
22:04:22.666    1    2472        SGA:    1926    WAITING    UNKNOWN    25
22:04:32.846    1    1136    1p4vyw2jan43d    SGA:    4176    WAITING    UNKNOWN    196
22:04:32.846    1    2472        SGA:    2434    WAITING    UNKNOWN    48

注意以上输出,比如第一行,代表在 22:03:32.116,节点1的session 1136最终阻塞了82个session. 顺着时间往下看,可见节点1的session 1136是问题期间最严重的holder,它在每个采样点都阻塞了100多个session,并且它持续等待 SGA: allocation forcing component growth,注意观察其 seq# 您会发现该event的 seq# 在不断变化,表明该session并未完全hang住,由于时间正好发生在夜间22:00左右,这显然是由于自动收集统计信息job导致shared memory resize造成,因此可以结合Scheduler/MMAN的trace以及 dba_hist_memory_resize_ops 的输出进一步确定问题。

注意:

  1. blocking_session_count 指某一个holder最终阻塞的session数,比如 a ← \leftarrow ← b ← \leftarrow ← c (a被b阻塞,b又被c阻塞),只计算c阻塞了1个session,因为中间的b可能在不同的阻塞链中发生重复。
  2. 如果最终的holder没有被ash采样(一般因为该holder处于空闲),比如 a ← \leftarrow ← c 并且b ← \leftarrow ← c (a被c阻塞,并且b也被c阻塞),但是c没有采样,那么以上脚本无法将c统计到最终holder里,这可能会导致一些遗漏。
  3. 注意比较 blocking_session_count 的数量与第3步查询的每个采样点的总session_count数,如果每个采样点的 blocking_session_count 数远小于总session_count数,那表明大部分session并未记载holder,因此本查询的结果并不能代表什么。
  4. 在Oracle 10g中,ASH并没有 blocking_inst_id 列,在以上所有的脚本中,您只需要去掉该列即可,因此10g的ASH一般只能用于诊断单节点的问题。

其他关于ASH的应用

除了通过ASH数据来找holder以外,我们还能用它来获取很多信息(基于数据库版本有所不同):

  • 比如通过 PGA_ALLOCATED 列来计算每个采样点的最大PGA,合计PGA以分析 ora-4030/Memory Swap 相关问题;
  • 通过 TEMP_SPACE_ALLOCATED 列来分析临时表空间使用情况;
  • 通过 IN_PARSE/IN_HARD_PARSE/IN_SQL_EXECUTION 列来分析SQL处于parse还是执行阶段;
  • 通过 CURRENT_OBJ#/CURRENT_FILE#/CURRENT_BLOCK# 来确定I/O相关等待发生的对象。

References
[1] https://blogs.oracle.com/database4cn/dbahistactivesesshistory

标签:采样,sample,sess,22,03,dba,hist,session,time
来源: https://blog.csdn.net/Sebastien23/article/details/118458452

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有