ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

机器学习3- 一元线性回归+Python实现

2020-03-31 16:08:00  阅读:533  来源: 互联网

标签:一元 plt Python sum boldsymbol dia 线性 self


目录

1. 线性模型

给定 \(d\) 个属性描述的示例 \(\boldsymbol{x} = (x_1; x_2; ...; x_d)\),其中 \(x_i\) 为 \(\boldsymbol{x}\) 在第 \(i\) 个属性上的取值,线性模型linear model)试图学得一个通过属性的线性组合来进行预测的函数,即:

\[f(\boldsymbol{x}) = w_1x_1 + w_2x_2 + ... + w_dx_d +b \tag{1.1} \]

使用向量形式为:

\[f(\boldsymbol{x}) = \boldsymbol{w}^T\boldsymbol{x}+b \tag{1.2} \]

其中 \(\boldsymbol{w} = (w_1;w_2;...;w_d)\),表达了各属性在预测中的重要性。

2. 线性回归

给定数据集 \(D = \lbrace(\boldsymbol{x}_1,{y}_1), (\boldsymbol{x}_2,{y}_2), ..., (\boldsymbol{x}_m,{y}_m)\rbrace\),其中 \(\boldsymbol{x}_i = (x_{i1}; x_{i2}; ...; x_{id})\),\(y_i \in \mathbb{R}\)。线性回归linear regression)试图学得一个能尽可能准确地预测真实输出标记的线性模型,即:

\[f(\boldsymbol{x}_i) = \boldsymbol{w}^T\boldsymbol{x}_i+b \text{,使得} f(\boldsymbol{x}_i) \simeq y_i\tag{1.3} \]

2.1 一元线性回归

先只考虑输入属性只有一个的情况,\(D = \lbrace({x}_1,{y}_1), ({x}_2,{y}_2), ..., ({x}_m,{y}_m)\rbrace\),\(x_i \in \mathbb{R}\)。对离散属性,若属性值存在order)关系,可通过连续化将其转化为连续值。

如”高度“属性的取值“高”、“中”、“低”,可转化为\(\{1.0, 0.5, 0.0\}\)。

若不存在序关系,则假定有 \(k\) 种可能的属性值,将其转化为 \(k\) 维向量。

如“瓜类”属性的取值有“冬瓜”、“西瓜”、“南瓜”,可转化为 \((0,0,1),(0,1,0),(1,0,0)\)。

线性回归试图学得:

\[f(x_i) = wx_i+b\text{,使得}f(x_i)\simeq y_i \tag{1.4} \]

为使 \(f(x_i)\simeq y_i\),即:使 \(f(x)\) 与 \(y\) 之间的差别最小化。
考虑回归问题的常用性能度量——均方误差(亦称平方损失(square loss)),即让均方误差最小化:

\[\begin{aligned} (w^*,b^*) = \underset{(w,b)}{arg\ min}\sum_{i=1}^m(f(x_i)-y_i)^2 \\ = \underset{(w,b)}{arg\ min}\sum_{i=1}^m(y_i-wx_i-b)^2 \end{aligned} \tag{1.5} \]

\(w^*,b^*\) 表示 \(w\) 和 \(b\) 的解。
均方误差对应了欧几里得距离,简称欧氏距离(Euclidean distance)。
基于均方误差最小化来进行模型求解的方法称为最小二乘法least square method)。在线性回归中,就是试图找到一条直线,使得所有样本到直线上的欧氏距离之和最小。

下面需要求解 \(w\) 和 \(b\) 使得 \(E_{(w,b)} = \sum\limits_{i=1}^m(y_i-wx_i-b)^2\) 最小化,该求解过程称为线性回归模型的最小二乘参数估计parameter estimation)。

\(E_{(w,b)}\) 为关于 \(w\) 和 \(b\) 的凸函数,当它关于 \(w\) 和 \(b\) 的导数均为 \(0\) 时,得到 \(w\) 和 \(b\) 的最优解。将 \(E_{(w,b)}\) 分别对 \(w\) 和 \(b\) 求导数得:

\[\frac{\partial{E_{(w,b)}}}{\partial(w)} = 2\Big(w\sum_{i=1}^m x_i^2 - \sum_{i=1}^m (y_i-b)x_i\Big) \tag{1.6} \]

\[\frac{\partial{E_{(w,b)}}}{\partial(b)} = 2\Big(mb - \sum_{i=1}^m (y_i-wx_i)\Big) \tag{1.7} \]

令式子 (1.6) 和 (1.7) 为 \(0\) 得到 \(w\) 和 \(b\) 的最优解的闭式(closed-form)解:

\[w = \frac{\sum_\limits{i=1}^m y_i(x_i-\overline{x})}{\sum\limits_{i=1}^m x_i^2 - \frac{1}{m}\Big(\sum\limits_{i=1}^m x_i\Big)^2} \tag{1.8} \]

\[b = \frac{1}{m}\sum_{i=1}^m (y_i-wx_i) \tag{1.9} \]

其中 \(\overline{x} = \frac{1}{m}\sum\limits_{i=1}^m x_i\) 为 \(x\) 的均值。

3. 一元线性回归的Python实现

现有如下训练数据,我们希望通过分析披萨的直径与价格的线性关系,来预测任一直径的披萨的价格。

其中 Diameter 为披萨直径,单位为“英寸”;Price 为披萨价格,单位为“美元”。

3.1 使用 stikit-learn

3.1.1 导入必要模块

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression

3.1.2 使用 Pandas 加载数据

pizza = pd.read_csv("pizza.csv", index_col='Id')
pizza.head()  # 查看数据集的前5行

3.1.3 快速查看数据

我们可以使用 matplotlib 画出数据的散点图,x 轴表示披萨直径,y 轴表示披萨价格。

def runplt():
    plt.figure()
    plt.title("Pizza price plotted against diameter")
    plt.xlabel('Diameter')
    plt.ylabel('Price')
    plt.grid(True)
    plt.xlim(0, 25)
    plt.ylim(0, 25)
    return plt

dia = pizza.loc[:,'Diameter'].values
price = pizza.loc[:,'Price'].values
print(dia)
print(price)
plt = runplt()
plt.plot(dia, price, 'k.')
plt.show()
[ 6  8 10 14 18]
[ 7.   9.  13.  17.5 18. ]

3.1.4 使用 stlearn 创建模型

model = LinearRegression()  # 创建模型
X = dia.reshape((-1,1))
y = price
model.fit(X, y)  # 拟合

X2 = [[0], [25]] # 取两个预测值
y2 = model.predict(X2)  # 进行预测
print(y2)  # 查看预测值

plt = runplt()
plt.plot(dia, price, 'k.')
plt.plot(X2, y2, 'g-')  # 画出拟合曲线
plt.show()
[ 1.96551724 26.37284483]

这里 fit()方法学得了一元线性回归模型 \(f(x) = wx+b\),这里 \(x\) 指披萨的直径,\(f(x)\) 为预测的披萨的价格。

fit() 的第一个参数 X 为 shape(样本个数,属性个数) 的数组或矩阵类型的参数,代表输入空间;
第二个参数 y 为 shape(样本个数,) 的数组类型的参数,代表输出空间。

3.1.5 模型评估

成本函数(cost function)也叫损失函数(lost function),用来定义模型与观测值的误差。

模型预测的价格和训练集数据的差异称为训练误差training error)也称残差residuals)。

plt = runplt()
plt.plot(dia, price, 'k.')
plt.plot(X2, y2, 'g-')

# 画出残差
yr = model.predict(X)
for index, x in enumerate(X):
    plt.plot([x, x], [y[index], yr[index]], 'r-')
    
plt.show()

根据最小二乘法,要得到更高的性能,就是让均方误差最小化,而均方误差就是残差平方和的平均值。

print("均方误差为: %.2f" % np.mean((model.predict(X)-y) ** 2))
均方误差为: 1.75

3.2 手动实现

3.2.1 计算 w 和 b

\(w\) 和 \(b\) 的最优解的闭式(closed-form)解为:

\[w = \frac{\sum_\limits{i=1}^m y_i(x_i-\overline{x})}{\sum\limits_{i=1}^m x_i^2 - \frac{1}{m}\Big(\sum\limits_{i=1}^m x_i\Big)^2} \tag{1.8} \]

\[b = \frac{1}{m}\sum_{i=1}^m (y_i-wx_i) \tag{1.9} \]

其中 \(\overline{x} = \frac{1}{m}\sum\limits_{i=1}^m x_i\) 为 \(x\) 的均值。

下面使用 Python 计算 \(w\) 和 \(b\) 的值:

w = np.sum(price * (dia - np.mean(dia))) / (np.sum(dia**2) - (1/dia.size) * (np.sum(dia))**2)
b = (1 / dia.size) * np.sum(price - w * dia)
print("w = %f\nb = %f" % (w, b))

y_pred = w * dia + b

plt = runplt()
plt.plot(dia, price, 'k.')  # 样本点
plt.plot(dia, y_pred, 'b-')  # 手动求出的线性回归模型
plt.plot(X2, y2, 'g-.')  # 使用LinearRegression.fit()求出的模型
plt.show()
w = 0.976293
b = 1.965517

可以看到两条直线重合,我们求出的回归模型与使用库求出的回归模型相同。

3.2.2 功能封装

将上述代码封装成类:

class LinearRegression:
    """
    拟合一元线性回归模型

    Parameters
    ----------
    x : shape 为(样本个数,)的 numpy.array
        只有一个属性的数据集

    y : shape 为(样本个数,)的 numpy.array
        标记空间

    Returns
    -------
    self : 返回 self 的实例.
    """
    def __init__(self):
        self.w = None
        self.b = None

    def fit(self, x, y):
        self.w = np.sum(y * (x - np.mean(x))) / (np.sum(x**2) - (1/x.size) * (np.sum(x))**2)
        self.b = (1 / x.size) * np.sum(y - self.w * x)
        return self

    def predict(self, x):
        """
        使用该线性模型进行预测

        Parameters
        ----------
        x : 数值 或 shape 为(样本个数,)的 numpy.array
            属性值

        Returns
        -------
        C : 返回预测值
        """
        return self.w * x + self.b

使用:

# 创建并拟合模型
model = LinearRegression()
model.fit(dia, price)

x2 = np.array([0, 25])  # 取两个预测值
y2 = model.predict(x2)  # 进行预测
print(y2)  # 查看预测值

runplt()
plt.plot(dia, price, 'b.')
plt.plot(x2, y2, 'y-')  # 画出拟合
plt.show()
[ 1.96551724 26.37284483]


此文原创禁止转载,转载文章请联系博主并注明来源和出处,谢谢!
作者: Raina_RLN https://www.cnblogs.com/raina/

标签:一元,plt,Python,sum,boldsymbol,dia,线性,self
来源: https://www.cnblogs.com/raina/p/12605768.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有