ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

java – 使用JOCL / OPENCL计算强度的加速总和

2019-07-04 02:50:20  阅读:216  来源: 互联网

标签:java opencl jocl


嗨,我是JOCL(opencl)的新手.我写了这段代码来得出每幅图像强度的总和.内核采用所有图像的所有像素的一维数组.图像为300×300,因此每张图像为90000像素.目前它比我按顺序执行时更慢.

我的代码

package PAR;

/*
 * JOCL - Java bindings for OpenCL
 * 
 * Copyright 2009 Marco Hutter - http://www.jocl.org/
 */
import IMAGE_IO.ImageReader;
import IMAGE_IO.Input_Folder;
import static org.jocl.CL.*;

import org.jocl.*;

/**
 * A small JOCL sample.
 */
public class IPPARA {

    /**
     * The source code of the OpenCL program to execute
     */
    private static String programSource =
            "__kernel void "
            + "sampleKernel(__global uint *a,"
            + "             __global uint *c)"
            + "{"
            + "__private uint intensity_core=0;"
            + "      uint i = get_global_id(0);"
            + "      for(uint j=i*90000; j < (i+1)*90000; j++){ "
            + "              intensity_core += a[j];"
            + "     }"
            + "c[i]=intensity_core;" 
            + "}";

    /**
     * The entry point of this sample
     *
     * @param args Not used
     */
    public static void main(String args[]) {
        long numBytes[] = new long[1];

        ImageReader imagereader = new ImageReader() ;
        int srcArrayA[]  = imagereader.readImages();

        int size[] = new int[1];
        size[0] = srcArrayA.length;
        long before = System.nanoTime();
        int dstArray[] = new int[size[0]/90000];


        Pointer srcA = Pointer.to(srcArrayA);
        Pointer dst = Pointer.to(dstArray);


        // Obtain the platform IDs and initialize the context properties
        System.out.println("Obtaining platform...");
        cl_platform_id platforms[] = new cl_platform_id[1];
        clGetPlatformIDs(platforms.length, platforms, null);
        cl_context_properties contextProperties = new cl_context_properties();
        contextProperties.addProperty(CL_CONTEXT_PLATFORM, platforms[0]);

        // Create an OpenCL context on a GPU device
        cl_context context = clCreateContextFromType(
                contextProperties, CL_DEVICE_TYPE_CPU, null, null, null);
        if (context == null) {
            // If no context for a GPU device could be created,
            // try to create one for a CPU device.
            context = clCreateContextFromType(
                    contextProperties, CL_DEVICE_TYPE_CPU, null, null, null);

            if (context == null) {
                System.out.println("Unable to create a context");
                return;
            }
        }

        // Enable exceptions and subsequently omit error checks in this sample
        CL.setExceptionsEnabled(true);

        // Get the list of GPU devices associated with the context
        clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, null, numBytes);

        // Obtain the cl_device_id for the first device
        int numDevices = (int) numBytes[0] / Sizeof.cl_device_id;
        cl_device_id devices[] = new cl_device_id[numDevices];
        clGetContextInfo(context, CL_CONTEXT_DEVICES, numBytes[0],
                Pointer.to(devices), null);

        // Create a command-queue
        cl_command_queue commandQueue =
                clCreateCommandQueue(context, devices[0], 0, null);

        // Allocate the memory objects for the input- and output data
        cl_mem memObjects[] = new cl_mem[2];
        memObjects[0] = clCreateBuffer(context,
                CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                Sizeof.cl_uint * srcArrayA.length, srcA, null);
        memObjects[1] = clCreateBuffer(context,
                CL_MEM_READ_WRITE,
                Sizeof.cl_uint * (srcArrayA.length/90000), null, null);

        // Create the program from the source code
        cl_program program = clCreateProgramWithSource(context,
                1, new String[]{programSource}, null, null);

        // Build the program
        clBuildProgram(program, 0, null, null, null, null);

        // Create the kernel
        cl_kernel kernel = clCreateKernel(program, "sampleKernel", null);

        // Set the arguments for the kernel
        clSetKernelArg(kernel, 0,
                Sizeof.cl_mem, Pointer.to(memObjects[0]));
        clSetKernelArg(kernel, 1,
                Sizeof.cl_mem, Pointer.to(memObjects[1]));

        // Set the work-item dimensions
        long local_work_size[] = new long[]{1};
        long global_work_size[] = new long[]{(srcArrayA.length/90000)*local_work_size[0]};


        // Execute the kernel
        clEnqueueNDRangeKernel(commandQueue, kernel, 1, null,
                global_work_size, local_work_size, 0, null, null);

        // Read the output data
        clEnqueueReadBuffer(commandQueue, memObjects[1], CL_TRUE, 0,
                (srcArrayA.length/90000) * Sizeof.cl_float, dst, 0, null, null);

        // Release kernel, program, and memory objects
        clReleaseMemObject(memObjects[0]);
        clReleaseMemObject(memObjects[1]);
        clReleaseKernel(kernel);
        clReleaseProgram(program);
        clReleaseCommandQueue(commandQueue);
        clReleaseContext(context);


        long after = System.nanoTime();

        System.out.println("Time: " + (after - before) / 1e9);

    }
}

在答案中的建议之后,通过CPU的并行代码几乎与顺序代码一样快.是否还有其他改进措施?

解决方法:

 for(uint j=i*90000; j < (i+1)*90000; j++){ "
        + "              c[i] += a[j];"

1)您使用全局内存(c [])求和,这很慢.使用私有变量使其更快.
 像这样的东西:

          "__kernel void "
        + "sampleKernel(__global uint *a,"
        + "             __global uint *c)"
        + "{"
        + "__private uint intensity_core=0;" <---this is a private variable of each core
        + "      uint i = get_global_id(0);"
        + "      for(uint j=i*90000; j < (i+1)*90000; j++){ "
        + "              intensity_core += a[j];" <---register is at least 100x faster than global memory
         //but we cannot get rid of a[] so the calculation time cannot be less than %50
        + "     }"
        + "c[i]=intensity_core;"   
        + "}";  //expecting %100 speedup

现在你有c [图像数]数组的强度和.

你的本地工作大小为1,如果你有至少160张图像(这是你的gpu的核心号码),那么计算将使用所有核心.

您将需要90000 * num_images次读取和num_images写入以及90000 * num_images寄存器读/写.使用寄存器会使内核时间缩短一半.

2)每2个内存访问只进行1次数学运算.你需要每1个内存访问至少10个数学,才能使用你gpu的一小部分峰值Gflops(6490M的250 Gflops峰值)

你的i7 cpu可以轻松拥有100 Gflops,但你的记忆力将成为瓶颈.当您通过pci-express发送整个数据时,情况会更糟.(HD Graphics 3000的额定值为125 GFLOPS)

 // Obtain a device ID 
    cl_device_id devices[] = new cl_device_id[numDevices];
    clGetDeviceIDs(platform, deviceType, numDevices, devices, null);
    cl_device_id device = devices[deviceIndex];
 //one of devices[] element must be your HD3000.Example: devices[0]->gpu devices[1]->cpu 
 //devices[2]-->HD3000

在你的程序中:

 // Obtain the cl_device_id for the first device
    int numDevices = (int) numBytes[0] / Sizeof.cl_device_id;
    cl_device_id devices[] = new cl_device_id[numDevices];
    clGetContextInfo(context, CL_CONTEXT_DEVICES, numBytes[0],
            Pointer.to(devices), null);

第一个设备可能是gpu.

标签:java,opencl,jocl
来源: https://codeday.me/bug/20190704/1372857.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有