ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

算法复习_回溯算法之装载问题、n后问题

2019-06-23 23:01:53  阅读:247  来源: 互联网

标签:复习 int 问题 算法 放置 回溯 皇后


 

 

一、基本概念

  • 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

  • 回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

  • 许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。



二、基本思想

  在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

  若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。



三、基本步骤   (1)针对所给问题,确定问题的解空间:首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。   (2)确定结点的扩展搜索规则   (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。     四、算法框架   (1)问题框架
  设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。
  (2)非递归回溯框架
int a[n],i;
初始化数组a[];
 i = 1;
 while (i>0(有路可走)   and  (未达到目标))  // 还未回溯到头
{
     if(i > n)                                              // 搜索到叶结点
     {   
          搜索到一个解,输出;
    }
     else                                                   // 处理第i个元素
     { 
          a[i]第一个可能的值;
           while(a[i]在不满足约束条件且在搜索空间内)
          {
              a[i]下一个可能的值;
          }
           if(a[i]在搜索空间内)
          {
               标识占用的资源;
               i = i+1;                              // 扩展下一个结点
         }
          else 
         {
               清理所占的状态空间;            // 回溯
              i = i –1; 
         }
}

  (3)递归框架

int a[n];
 try(int i)
 {
     if(i>n)
        输出结果;
      else
     {
       for(j = 下界; j <= 上界; j=j+1)  // 枚举i所有可能的路径
        {
            if(fun(j))                 // 满足限界函数和约束条件
              {
                 a[i] = j;
               ...                         // 其他操作
                 try(i+1);
               回溯前的清理工作(如a[i]置空值等);
               }
          }
      }
 }

 

  五(一)回溯算法之装载问题  传送门

问题描述:

  有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量是wi,且不能超,即Σwi<=c1+c2。

算法思想:

  ——在给定的装载问题有解的情况下

  最优装载方案: 首先将第一艘轮船尽可能的装满;  

          然后将剩余的集装箱装上第二艘轮船。

  将第一艘轮船尽可能的装满等价于选取全体集装箱的一个子集,使该子集中集装箱重量之和最接近c1。

算法设计:

  先考虑装载一艘轮船的情况,依次讨论每个集装箱的装载情况,共分为两种,要么装(1),要么不装(0),因此很明显其解空间树可以用子集树来表示。

  在算法Maxloading中,返回不超过c的最大子集和,但是并没有给出到达这个最大子集和的相应子集,稍后完善。

  在算法Maxloading中,调用递归函数Backtrack(1)实现回溯搜索。Backtrack(i)搜索子集树中的第i层子树。

  在算法Backtrack中,当i>n时,算法搜索到叶结点,其相应的载重量为cw,如果cw>bestw,则表示当前解优于当前的最优解,此时应该更新bestw。

  算法Backtrack动态地生成问题的解空间树。在每个结点处算法花费O(1)时间。子集树中结点个数为O(2^n),故Backtrack所需的时间为O(2^n)。另外Backtrack还需要额外的O(n)的递归栈空间。

 

 

五(二)回溯算法之n后问题  传送门

  八皇后问题,是一个古老而著名的问题.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法?   

  那么,我们将8皇后问题推广一下,就可以得到我们的N皇后问题了。N皇后问题是一个经典的问题,在一个NxN的棋盘上放置N个皇后,使其不能互相攻击 (同一行、同一列、同一斜线上的皇后都会自动攻击) 那么问,有多少种摆法?

  N皇后问题其实就是回溯算法中的一个典型应用

   算法伪代码描述    

下面是算法的高级伪码描述,这里用一个N*N的矩阵来存储棋盘:

  1. 算法开始, 清空棋盘,当前行设为第一行,当前列设为第一列

  2. 在当前行,当前列的位置上判断是否满足条件(即保证经过这一点的行,列与斜线上都没有两个皇后),若不满足,跳到第4步

  3. 在当前位置上满足条件的情形:

    • 在当前位置放一个皇后,若当前行是最后一行,记录一个解;
    • 若当前行不是最后一行,当前行设为下一行, 当前列设为当前行的第一个待测位置;
    • 若当前行是最后一行,当前列不是最后一列,当前列设为下一列;
    • 若当前行是最后一行,当前列是最后一列,回溯,即清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置。
    • 以上返回到第2步
  4. 在当前位置上不满足条件的情形:

  • 若当前列不是最后一列,当前列设为下一列,返回到第2步;
  • 若当前列是最后一列了,回溯,即,若当前行已经是第一行了,算法退出,否则,清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置,返回到第2步;

图解问题过程

  为了让大家更好理解,这里画了一张图。

 

coding time

我们之前说过N皇后问题是回溯算法的经典应用。因此我们可以使用回溯法来解决该问题,具体实现也有两个途径,递归和非递归。

  • 递归法
    其实递归法算是比较简单的了。我们使用一个一维数组来存储棋盘。具体细节如下:把棋盘存储为一个一维数组a[N],数组中第i个元素的值代表第i行的皇后位置。在判断是否冲突时也很简单:
    • 首先每行只有一个皇后,且在数组中只占据一个元素的位置,行冲突就不存在了。
    • 其次是列冲突,判断一下是否有a[i]与当前要放置皇后的列j相等即可。
    • 至于斜线冲突,通过观察可以发现所有在斜线上冲突的皇后的位置都有规律。即它们所在的行列互减的绝对值相等,即| row – i | = | col – a[i] | 。
#include <stdio.h>
#include <stdlib.h>

const int N=20;   //最多放皇后的个数
int q[N];         //i表示皇后所在的行号,
                  //q[i]表示皇后所在的列号
int cont = 0;     //统计解的个数
//输出一个解
void print(int n)
{
    int i,j;
    cont++;
    printf("第%d个解:",cont);
    for(i=1;i<=n;i++)
        printf("(%d,%d) ",i,q[i]);
    printf("\n");
    for(i=1;i<=n;i++)        //行
    {
        for(j=1;j<=n;j++)    //列
        {
            if(q[i]!=j)
                printf("x ");
            else
                printf("Q ");
        }
        printf("\n");
    }
}
//检验第i行的k列上是否可以摆放皇后
int find(int i,int k)
{
    int j=1;
    while(j<i)  //j=1~i-1是已经放置了皇后的行
    {
        //第j行的皇后是否在k列或(j,q[j])与(i,k)是否在斜线上
        if(q[j]==k || abs(j-i)==abs(q[j]-k))
            return 0;
        j++;
    }
    return 1;
}
//放置皇后到棋盘上
void place(int k,int n)
{
    int j;
    if(k>n)
        print(n); //递归出口
    else
    {
        for(j=1;j<=n;j++)   //试探第k行的每一个列
        {
            if(find(k,j))
            {
                q[k] = j;   //保存位置
                place(k+1,n);  //接着下一行
            }
        }
    }
}
int main1111(void)
{
    int n;
    printf("请输入皇后的个数(n<=20),n=:");
    scanf("%d",&n);
    if(n>20)
        printf("n值太大,不能求解!\n");
    else
    {
        printf("%d皇后问题求解如下(每列的皇后所在的行数):\n",n);
        place(1,n);        //问题从最初状态解起
        printf("\n");
    }
    system("pause");
    return 0;
}
  • 迭代法
    为什么还要迭代呢?因为递归效率有时候并不是那么的高。具体思路:首先对N行中的每一行进行探测,查找该行中可以放皇后的位置。具体怎么做呢?
    • 首先对该行的逐列进行探测,看是否可以放置皇后,如果可以,则在该列放置一个皇后,然后继续探测下一行的皇后位置。
    • 如果已经探测完所有的列都没有找到可以放置皇后的列,这时候就应该回溯了,把上一行皇后的位置往后移一列。
    • 如果上一行皇后移动后也找不到位置,则继续回溯直至某一行找到皇后的位置或回溯到第一行,如果第一行皇后也无法找到可以放置皇后的位置,则说明已经找到所有的解,程序终止。
    • 如果该行已经是最后一行,则探测完该行后,如果找到放置皇后的位置,则说明找到一个结果,打印出来。
    • 但是此时并不能在此处结束程序,因为我们要找的是所有N皇后问题所有的解,此时应该清除该行的皇后,从当前放置皇后列数的下一列继续探测。

由此可见,非递归方法的一个重要问题时何时回溯及如何回溯的问题。

具体代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define QUEEN 8     //皇后的数目
#define INITIAL -10000 //棋盘的初始值

int a[QUEEN];    //一维数组表示棋盘

void init()  //对棋盘进行初始化
{
    int *p;
    for (p = a; p < a + QUEEN; ++p)
    {
        *p = INITIAL;
    }
}

int valid(int row, int col)    //判断第row行第col列是否可以放置皇后
{
    int i;
    for (i = 0; i < QUEEN; ++i)  //对棋盘进行扫描
    {   //判断列冲突与斜线上的冲突
        if (a[i] == col || abs(i - row) == abs(a[i] - col))
            return 0;
    }
    return 1;
}

void print()    //打印输出N皇后的一组解
{
    int i, j;
    for (i = 0; i < QUEEN; ++i)
    {
        for (j = 0; j < QUEEN; ++j)
        {
            if (a[i] != j)      //a[i]为初始值
                printf("%c ", '.');
            else                //a[i]表示在第i行的第a[i]列可以放置皇后
                printf("%c ", '#');
        }
        printf("\n");
    }
    for (i = 0; i < QUEEN; ++i)
        printf("%d ", a[i]);
    printf("\n");
    printf("--------------------------------\n");
}

void queen()      //N皇后程序
{
    int n = 0;
    int i = 0, j = 0;
    while (i < QUEEN)
    {
        while (j < QUEEN)        //对i行的每一列进行探测,看是否可以放置皇后
        {
            if(valid(i, j))      //该位置可以放置皇后
            {
                a[i] = j;        //第i行放置皇后
                j = 0;           //第i行放置皇后以后,需要继续探测下一行的皇后位置,
                                 //所以此处将j清零,从下一行的第0列开始逐列探测
                break;
            }
            else
            {
                ++j;             //继续探测下一列
            }
        }
        if(a[i] == INITIAL)         //第i行没有找到可以放置皇后的位置
        {
            if (i == 0)             //回溯到第一行,仍然无法找到可以放置皇后的位置,
                                    //则说明已经找到所有的解,程序终止
                break;
            else                    //没有找到可以放置皇后的列,此时就应该回溯
            {
                --i;
                j = a[i] + 1;        //把上一行皇后的位置往后移一列
                a[i] = INITIAL;      //把上一行皇后的位置清除,重新探测
                continue;
            }
        }
        if (i == QUEEN - 1)          //最后一行找到了一个皇后位置,
                                     //说明找到一个结果,打印出来
        {
            printf("answer %d : \n", ++n);
            print();
            //不能在此处结束程序,因为我们要找的是N皇后问题的所有解,
            //此时应该清除该行的皇后,从当前放置皇后列数的下一列继续探测。
            j = a[i] + 1;             //从最后一行放置皇后列数的下一列继续探测
            a[i] = INITIAL;           //清除最后一行的皇后位置
            continue;
        }
        ++i;              //继续探测下一行的皇后位置
    }
}

int main(void)
{
    init();
    queen();
    system("pause");
    return 0;
}

 




     

标签:复习,int,问题,算法,放置,回溯,皇后
来源: https://www.cnblogs.com/1138720556Gary/p/11074773.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有