ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

Java数据结构和算法

2022-09-09 18:30:27  阅读:217  来源: 互联网

标签:Java s1 运算符 算法 数据结构 public 表达式


一、简介

编程好比是一辆汽车,而数据结构和算法是汽车内部的变速箱。一个开车的人不懂变速箱的原理也是能开车的,同理一个不懂数据结构和算法的人也能编程。但是如果一个开车的人懂变速箱的原理,比如降低速度来获得更大的牵引力,或者通过降低牵引力来获得更快的行驶速度。那么爬坡时使用1档,便可以获得更大的牵引力;下坡时便使用低档限制车的行驶速度。回到编程而言,比如将一个班级的学生名字要临时存储在内存中,你会选择什么数据结构来存储,数组还是ArrayList,或者HashSet,或者别的数据结构。如果不懂数据结构的,可能随便选择一个容器来存储,也能完成所有的功能,但是后期如果随着学生数据量的增多,随便选择的数据结构肯定会存在性能问题,而一个懂数据结构和算法的人,在实际编程中会选择适当的数据结构来解决相应的问题,会极大的提高程序的性能。

1.1 数据结构

数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

1.1.1 数据结构的基本功能

①、如何插入一条新的数据项
②、如何寻找某一特定的数据项
③、如何删除某一特定的数据项
④、如何迭代的访问各个数据项,以便进行显示或其他操作

1.1.2 常用的数据结构

对于数组,你们所说的查找快,我想只是随机查找快,因为知道数组下标,可以按索引获取任意值。

但是你要查找某个特定值,对于无序数组,还是需要遍历整个数组,那么查找效率是`O(n)·,效率是很低的(有序数组按照二分查找算法还是很快的)。

插入快,是在数组尾部进行插入,获取到数组的最后一个索引下标,加1进行赋值就可以了。

删除慢,除开尾部删除,在任意中间或者前面删除,后面的元素都要整体进行平移的,所以也是比较慢的。

综上所述:对于数组,随机查找快,数组尾部增删快,其余的操作效率都是很低的。

20171124223229656-408723583.png

1.2 算法

算法简单来说就是解决问题的步骤。

Java中,算法通常都是由类的方法来实现的。前面的数据结构,比如链表为啥插入、删除快,而查找慢,平衡的二叉树插入、删除、查找都快,这都是实现这些数据结构的算法所造成的。后面我们讲的各种排序实现也是算法范畴的重要领域。

1.2.1 算法的五个特征

①、有穷性:对于任意一组合法输入值,在执行又穷步骤之后一定能结束,即:算法中的每个步骤都能在有限时间内完成。
②、确定性:在每种情况下所应执行的操作,在算法中都有确切的规定,使算法的执行者或阅读者都能明确其含义及如何执行。并且在任何条件下,算法都只有一条执行路径。
③、可行性:算法中的所有操作都必须足够基本,都可以通过已经实现的基本操作运算有限次实现之。
④、有输入:作为算法加工对象的量值,通常体现在算法当中的一组变量。有些输入量需要在算法执行的过程中输入,而有的算法表面上可以没有输入,实际上已被嵌入算法之中。
⑤、有输出:它是一组与“输入”有确定关系的量值,是算法进行信息加工后得到的结果,这种确定关系即为算法功能。

1.2.2 算法的设计原则

①、正确性:首先,算法应当满足以特定的“规则说明”方式给出的需求。其次,对算法是否“正确”的理解可以有以下四个层次:

一、程序语法错误。
二、程序对于几组输入数据能够得出满足需要的结果。
三、程序对于精心选择的、典型、苛刻切带有刁难性的几组输入数据能够得出满足要求的结果。
四、程序对于一切合法的输入数据都能得到满足要求的结果。

PS:通常以第层意义的正确性作为衡量一个算法是否合格的标准。

②、可读性:算法为了人的阅读与交流,其次才是计算机执行。因此算法应该易于人的理解;另一方面,晦涩难懂的程序易于隐藏较多的错误而难以调试。
③、健壮性:当输入的数据非法时,算法应当恰当的做出反应或进行相应处理,而不是产生莫名其妙的输出结果。并且,处理出错的方法不应是中断程序执行,而是应当返回一个表示错误或错误性质的值,以便在更高的抽象层次上进行处理。
④、高效率与低存储量需求:通常算法效率值得是算法执行时间;存储量是指算法执行过程中所需要的最大存储空间,两者都与问题的规模有关。

前面三点正确性,可读性和健壮性相信都好理解。对于第四点算法的执行效率和存储量,我们知道比较算法的时候,可能会说“A算法比B算法快两倍”之类的话,但实际上这种说法没有任何意义。

因为当数据项个数发生变化时,A算法和B算法的效率比例也会发生变化,比如数据项增加了50%,可能A算法比B算法快三倍,但是如果数据项减少了50%,可能A算法和B算法速度一样。

所以描述算法的速度必须要和数据项的个数联系起来。也就是“大O”表示法,它是一种算法复杂度的相对表示方式,这里我简单介绍一下,后面会根据具体的算法来描述。

  • 相对(relative):你只能比较相同的事物。你不能把一个做算数乘法的算法和排序整数列表的算法进行比较。但是,比较2个算法所做的算术操作(一个做乘法,一个做加法)将会告诉你一些有意义的东西;
  • 表示(representation):大O(用它最简单的形式)把算法间的比较简化为了一个单一变量。这个变量的选择基于观察或假设。例如,排序算法之间的对比通常是基于比较操作(比较2个结点来决定这2个结点的相对顺序)。这里面就假设了比较操作的计算开销很大。但是,如果比较操作的计算开销不大,而交换操作的计算开销很大,又会怎么样呢?这就改变了先前的比较方式;
  • 复杂度(complexity):如果排序10,000个元素花费了我1秒,那么排序1百万个元素会花多少时间?在这个例子里,复杂度就是相对其他东西的度量结果。

然后我们在说说算法的存储量,包括:

  • 程序本身所占空间;
  • 输入数据所占空间;
  • 辅助变量所占空间;

一个算法的效率越高越好,而存储量是越低越好。

二、抽象数据类型(ADT)

在介绍抽象数据类型的时候,我们先看看什么是数据类型,听到这个词,在Java中我们可能首先会想到像int,double这样的词,这是Java中的基本数据类型,一个数据类型会涉及到两件事:

①、拥有特定特征的数据项
②、在数据上允许的操作

比如Java中的int数据类型,它表示整数,取值范围为:-2147483648~2147483647,还能使用各种操作符,+、-、*、/等对其操作。数据类型允许的操作是它本身不可分离的部分,理解类型包括理解什么样的操作可以应用在该类型上。

那么当年设计计算机语言的人,为什么会考虑到数据类型?

我们先看这样一个例子,比如,大家都需要住房子,也都希望房子越大越好。但显然,没有钱,考虑房子没有意义。于是就出现了各种各样的商品房,有别墅的、复式的、错层的、单间的……甚至只有两平米的胶囊房间。这样做的意义是满足不同人的需要。

同样,在计算机中,也存在相同的问题。计算1+1这样的表达式不需要开辟很大的存储空间,不需要适合小数甚至字符运算的内存空间。于是计算机的研究者们就考虑,要对数据进行分类,分出来多种数据类型。比如int,比如float

虽然不同的计算机有不同的硬件系统,但实际上高级语言编写者才不管程序运行在什么计算机上,他们的目的就是为了实现整形数字的运算,比如a+b等。他们才不关心整数在计算机内部是如何表示的,也不管CPU是如何计算的。于是我们就考虑,无论什么计算机、什么语言都会面临类似的整数运算,我们可以考虑将其抽象出来。抽象是抽取出事物具有的普遍性本质,是对事物的一个概括,是一种思考问题的方式。

抽象数据类型(ADT)是指一个数学模型及定义在该模型上的一组操作。它仅取决于其逻辑特征,而与计算机内部如何表示和实现无关。比如刚才说得整型,各个计算机,不管大型机、小型机、PC、平板电脑甚至智能手机,都有“整型”类型,也需要整形运算,那么整型其实就是一个抽象数据类型。

更广泛一点的,比如我们刚讲解的栈和队列这两种数据结构,我们分别使用了数组和链表来实现,比如栈,对于使用者只需要知道pop()push()方法或其它方法的存在以及如何使用即可,使用者不需要知道我们是使用的数组或是链表来实现的。

ADT的思想可以作为我们设计工具的理念,比如我们需要存储数据,那么就从考虑需要在数据上实现的操作开始,需要存取最后一个数据项吗?还是第一个?还是特定值的项?还是特定位置的项?回答这些问题会引出ADT的定义,只有完整的定义了ADT后,才应该考虑实现的细节。

这在我们Java语言中的接口设计理念是相通的。

三、前缀、中缀、后缀表达式

前面我们介绍了三种数据结构,第一种数组主要用作数据存储,但是后面的两种栈和队列我们说主要作为程序功能实现的辅助工具,其中在介绍栈时我们知道栈可以用来做单词逆序,匹配关键字符等等,那它还有别的什么功能吗?以及数据结构与本篇博客的主题前缀、中缀、后缀表达式有什么关系呢?

3.1 人如何解析算术表达式

如何解析算术表达式?或者换种说法,遇到某个算术表达式,我们是如何计算的:

①、求值3+4-5

这个表达式,我们在看到3+4后都不能直接计算3+4的值,知道看到4后面的-号,因为减号的优先级和前面的加号一样,所以可以计算3+4的值了,如果4后面是*或者/,那么就要在乘除过后才能做加法操作,比如:

②、求值3+4*5

这个不能先求3+4的值,因为4后面的*运算级别比前面的+高。通过这两个表达式的说明,我们可以总结解析表达式的时候遵循的几条规则:

①、从左到右读取算式。
②、已经读到了可以计算值的两个操作数和一个操作符时,可以计算,并用计算结果代替那两个操作数和一个操作符。
③、继续这个过程,从左到右,能算就算,直到表达式的结尾。

3.2 计算机如何解析算术表达式

对于前面的表达式3+4-5,我们人是有思维能力的,能根据操作符的位置,以及操作符的优先级别能算出该表达式的结果。但是计算机怎么算?

计算机必须要向前(从左到右)来读取操作数和操作符,等到读取足够的信息来执行一个运算时,找到两个操作数和一个操作符进行运算,有时候如果后面是更高级别的操作符或者括号时,就必须推迟运算,必须要解析到后面级别高的运算,然后回头来执行前面的运算。我们发现这个过程是极其繁琐的,而计算机是一个机器,只认识高低电平,想要完成一个简单表达式的计算,我们可能要设计出很复杂的逻辑电路来控制计算过程,那更不用说很复杂的算术表达式,所以这样来解析算术表达式是不合理的,那么我们应该采取什么办法呢?

请大家先看看什么是前缀表达式,中缀表达式,后缀表达式:这三种表达式其实就是算术表达式的三种写法,以3+4-5为例

①、前缀表达式:操作符在操作数的前面,比如+-543
②、中缀表达式:操作符在操作数的中间,这也是人类最容易识别的算术表达式3+4-5
③、后缀表达式:操作符在操作数的后面,比如34+5-

上面我们讲的人是如何解析算术表达式的,也就是解析中缀表达式,这是人最容易识别的,但是计算机不容易识别,计算机容易识别的是前缀表达式和后缀表达式,将中缀表达式转换为前缀表达式或者后缀表达式之后,计算机能很快计算出表达式的值,那么中缀表达式是如何转换为前缀表达式和后缀表达式,以及计算机是如何解析前缀表达式和后缀表达式来得到结果的呢?

3.3 后缀表达式

后缀表达式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则)。

由于后缀表达式的运算符在两个操作数的后面,那么计算机在解析后缀表达式的时候,只需要从左向右扫描,也就是只需要向前扫描,而不用回头扫描,遇到运算符就将运算符放在前面两个操作符的中间(这里先不考虑乘方类似的单目运算),一直运算到最右边的运算符,那么就得出运算结果了。既然后缀表达式这么好,那么问题来了:

①、如何将中缀表达式转换为后缀表达式?

对于这个问题,转换的规则如下:

一、先自定义一个栈

package com.ys.poland;
 
public class MyCharStack {
    private char[] array;
    private int maxSize;
    private int top;
     
    public MyCharStack(int size){
        this.maxSize = size;
        array = new char[size];
        top = -1;
    }
     
    //压入数据
    public void push(char value){
        if(top < maxSize-1){
            array[++top] = value;
        }
    }
     
    //弹出栈顶数据
    public char pop(){
        return array[top--];
    }
     
    //访问栈顶数据
    public char peek(){
        return array[top];
    }
     
    //查看指定位置的元素
    public char peekN(int n){
        return array[n];
    }
     
    //为了便于后面分解展示栈中的内容,我们增加了一个遍历栈的方法(实际上栈只能访问栈顶元素的)
    public void displayStack(){
        System.out.print("Stack(bottom-->top):");
        for(int i = 0 ; i < top+1; i++){
            System.out.print(peekN(i));
            System.out.print(' ');
        }
        System.out.println("");
    }
     
    //判断栈是否为空
    public boolean isEmpty(){
        return (top == -1);
    }
     
    //判断栈是否满了
    public boolean isFull(){
        return (top == maxSize-1);
    }
 
}

二、前缀表达式转换为后缀表达式

package com.ys.poland;
 
public class InfixToSuffix {
    private MyCharStack s1;//定义运算符栈
    private MyCharStack s2;//定义存储结果栈
    private String input;
     
    //默认构造方法,参数为输入的中缀表达式
    public InfixToSuffix(String in){
        input = in;
        s1 = new MyCharStack(input.length());
        s2 = new MyCharStack(input.length());
    }
    //中缀表达式转换为后缀表达式,将结果存储在栈中返回,逆序显示即后缀表达式
    public MyCharStack doTrans(){
        for(int j = 0; j < input.length(); j++){
            System.out.print("s1栈元素为:");
            s1.displayStack();
            System.out.print("s2栈元素为:");
            s2.displayStack();
            char ch = input.charAt(j);
            System.out.println("当前解析的字符:"+ch);
            switch (ch) {
            case '+':
            case '-':
                gotOper(ch,1);
                break;
            case '*':
            case '/':
                gotOper(ch,2);
                break;
            case '(':
                s1.push(ch);//如果当前字符是'(',则将其入栈
                break;
            case ')':
                gotParen(ch);
                break;
            default:
                //1、如果当前解析的字符是操作数,则直接压入s2
                //2、
                s2.push(ch);
                break;
            }//end switch
        }//end for
         
        while(!s1.isEmpty()){
            s2.push(s1.pop());
        }
        return s2;
    }
     
    public void gotOper(char opThis,int prec1){
        while(!s1.isEmpty()){
            char opTop = s1.pop();
            if(opTop == '('){//如果栈顶是'(',直接将操作符压入s1
                s1.push(opTop);
                break;
            }else{
                int prec2;
                if(opTop == '+' || opTop == '-'){
                    prec2 = 1;
                }else{
                    prec2 = 2;
                }
                if(prec2 < prec1){//如果当前运算符比s1栈顶运算符优先级高,则将运算符压入s1
                    s1.push(opTop);
                    break;
                }else{//如果当前运算符与栈顶运算符相同或者小于优先级别,那么将S1栈顶的运算符弹出并压入到S2中
                    //并且要再次再次转到while循环中与 s1 中新的栈顶运算符相比较;
                    s2.push(opTop);
                }
            }
             
        }//end while
        //如果s1为空,则直接将当前解析的运算符压入s1
        s1.push(opThis);
    }
     
    //当前字符是 ')' 时,如果栈顶是'(',则将这一对括号丢弃,否则依次弹出s1栈顶的字符,压入s2,直到遇到'('
    public void gotParen(char ch){
        while(!s1.isEmpty()){
            char chx = s1.pop();
            if(chx == '('){
                break;
            }else{
                s2.push(chx);
            }
        }
    }
}

三、测试

@Test
public void testInfixToSuffix(){
    String input;
    System.out.println("Enter infix:");
    Scanner scanner = new Scanner(System.in);
    input = scanner.nextLine();
    InfixToSuffix in = new InfixToSuffix(input);
    MyCharStack my = in.doTrans();
    my.displayStack();
}

四、结果

五、分析

②、计算机如何实现后缀表达式的运算?

package com.ys.poland;
 
public class CalSuffix {
    private MyIntStack stack;
    private String input;
     
    public CalSuffix(String input){
        this.input = input;
        stack = new MyIntStack(input.length());
         
    }
     
    public int doCalc(){
        int num1,num2,result;
        for(int i = 0; i < input.length(); i++){
            char c = input.charAt(i);
            if(c >= '0' && c <= '9'){
                stack.push((int)(c-'0'));//如果是数字,直接压入栈中
            }else{
                num2 = stack.pop();//注意先出来的为第二个操作数
                num1 = stack.pop();
                switch (c) {
                case '+':
                    result = num1+num2;
                    break;
                case '-':
                    result = num1-num2;
                    break;
                case '*':
                    result = num1*num2;
                    break;
                case '/':
                    result = num1/num2;
                    break;
                default:
                    result = 0;
                    break;
                }//end switch
                 
                stack.push(result);
            }//end else
        }//end for
        result = stack.pop();
        return result;
    }
     
    public static void main(String[] args) {
        //中缀表达式:1*(2+3)-5/(2+3) = 4
        //后缀表达式:123+*123+/-
        CalSuffix cs = new CalSuffix("123+*523+/-");
        System.out.println(cs.doCalc()); //4
    }
}

3.4 前缀表达式

前缀表达式,指的是不包含括号,运算符放在两个运算对象的前面,严格从右向左进行(不再考虑运算符的优先规则),所有的计算按运算符出现的顺序。

注意:后缀表达式是从左向右解析,而前缀表达式是从右向左解析。

①、如何将中缀表达式转换为前缀表达式?

②、计算机如何实现前缀表达式的运算?

参考

标签:Java,s1,运算符,算法,数据结构,public,表达式
来源: https://www.cnblogs.com/ciel717/p/16341841.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有