ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

1.7和1.8 HashMap 源码浅析

2019-03-14 18:55:14  阅读:174  来源: 互联网

标签:1.7 hash next 源码 key Entry table null 浅析


Jdk 1.7

  1. 数据结构

    1.7版本的HashMap采用数组加链表的方式存储数据,数组是用来存储数据的在数组的位置,链表则时用来存放数据的,由于根据hash可能发生碰撞,一个位置会出现多个数据,所以采用链表结构来存储数据,结构如下图所示.

    1.7和1.8 HashMap 源码浅析

  2. 基本成员变量
    capacity 数组的长度

    // 当前数组的容量,始终保持2^n,可以扩容,扩容后是当前线程的2倍
        // 1 << 4 = 1 * 2^4   1的二进制左移4位
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    capacity 的最大值 (扩容时,如果已经是最大值,会设置成Integer.MAX_VALUE)

    // 如果传入的值大于该值,也会替换为 1 << 30(2 ^ 30)
        static final int MAXIMUM_CAPACITY = 1 << 30;

    factor 负载因子(用来算阈值)

    // 负载因子 默认值为 0.75
        static final float DEFAULT_LOAD_FACTOR = 0.75f;

    threshold 阈值(capacity * factor),扩容时用来判断有没有大于等于这个值
    int threshold;

    size

    // map的容量
        transient int size;

    Entry (存储数据的地方)

    static class Entry<K,V> implements Map.Entry<K,V> {
        // 就是传输key
        final K key;
        // 就是value
        V value;
        // 用于指向单项链表的下一个Entry
        Entry<K,V> next;
        // 通过key计算的hash值
        int hash;
    
        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }
  3. 构造方法
    有参构造

    public HashMap(int initialCapacity, float loadFactor) {
                    // 容量不能小于0
                    if (initialCapacity < 0)
                            throw new IllegalArgumentException("Illegal initial capacity: " +
                                            initialCapacity);
                    // 容量大于MAXIMUM_CAPACITY时,等于MAXIMUM_CAPACITY
                    if (initialCapacity > MAXIMUM_CAPACITY)
                            initialCapacity = MAXIMUM_CAPACITY;
                    // loadFactor不能小于等于0
                    if (loadFactor <= 0 || Float.isNaN(loadFactor))
                            throw new IllegalArgumentException("Illegal load factor: " +
                                            loadFactor);
    
                    this.loadFactor = loadFactor;
                    threshold = initialCapacity;
                    init();
                }

    无参构造
    // 使用默认的容量和负载因子

    public HashMap() {
                        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
                }
  4. 基本方法
    Put方法 (具体流程看下面的执行流程分析或者代码注释)
    具体执行流程:
    (1) 判断当前table是否为EMPTY_TABLE={},证明没有初始化,调用inflateTable初始化,具体详见后面inflateTable()方法代码分析.
    (2) 判断key是否为null,是null调用putForNullKey插入方法(证明1.7的HashMap允许key为null),具体详见后面putForNullKey()方法代码分析.
    (3) 获取当前key的hash,然后算出hash在数组的位置i(hash & (tab.length - 1)).给大家解释下为什么数组的长度必须是2的冥,是和算i的位置有关系,因为如果一个数是2的冥次方,假如这个数是n,那么 hash % n = hash & (n -1),这就是为什么i的位置一定会在数组长度范围中,因为取得是余数,还有就是位运算比直接取余效率高.
    (4) 判断当前位置上有没有值table[i],如果有值,遍历链表,找出相同的key和hash,然后替换value,返回旧的value(oldOvalue).
    (5) 如果没有找到相同的key和hash,那么就添加这个节点(Entry),方法addEntry().
    (6) 在addEntry()方法里面判断需不需扩容,需要就扩容,调用扩容方法resize(),然后在调用 createEntry()方法添加节点,size++.

            // 插入
            public V put(K key, V value) {
                    // 当插入第一个元素时,需要初始化
                    if (table == EMPTY_TABLE) {
                            // 初始化
                            inflateTable(threshold);
                    }
                    // key为null是
                    if (key == null)
                            // 找出key为null,替换返回旧值
                            // 没有则新添加一个key为null的Entry
                            return putForNullKey(value);
                    // 计算hash值
                    int hash = hash(key);
                    // 根据hash,找出table的位置
                    int i = indexFor(hash, table.length);
                    // 因为在table[i]中,可能存在多个元素(同一个hash),所以要基于链表实现
                    // 循环table[i]上的链表(不为空),存在就修改,返回旧值(oldValue)
                    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                            Object k;
                            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                                    V oldValue = e.value;
                                    e.value = value;
                                    e.recordAccess(this);
                                    return oldValue;
                            }
                    }
    
                    modCount++;
                    // 为空或者不存在,则新添加(需要计算容量)
                    addEntry(hash, key, value, i);
                    return null;
            }

    inflateTable初始化方法 (懒加载,只有第一次调用put方法时才初始化)

    // 初始化table
                private void inflateTable(int toSize) {
                        // Find a power of 2 >= toSize
                        // 计算出大于等于toSize最邻近的2^n(所以capacity一定是2^n)
                        int capacity = roundUpToPowerOf2(toSize);
                        // 在此计算阈值 capacity * loadFactor
                        threshold = (int) Math.min(capacity * loadFactor, 
                        MAXIMUM_CAPACITY + 1);
                        // 创建capacity大小的capacity数组就是hashmap的容器
                        table = new Entry[capacity];
                        initHashSeedAsNeeded(capacity);
                }

    putForNullKey方法(存储key为null的数据)
    具体执行流程:
    (1) 遍历table[0]处的链表(说明nullkey永远存在table[0]位置)
    (2) 找到key==null 的数据,替换value,返回旧的value
    (3) 没有找到,就在table[0]位置添加一个key为null的Entry,调用addEntry()方法.

    private V putForNullKey(V value) {
                        // 遍历table[0]的链表
                        // 找到key等于null的,把值覆盖,返回旧值(oldValue)
                        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                                if (e.key == null) {
                                        V oldValue = e.value;
                                        e.value = value;
                                        e.recordAccess(this);
                                        return oldValue;
                                }
                        }
                        modCount++;
                        // 没有找到就添加一个key为null的Entry
                        addEntry(0, null, value, 0);
                        return null;
                }

    addEntry方法(判断是否需要扩容,然后在添加节点Entry)
    执行流程:
    (1) 判断是否需要扩容,size(每次添加一个entry size++)>=threshold(阈值)并且当前这个key的hash算出的位置必须有元素才扩容,具体详解看代码注释.
    (2) 如果满足扩容条件,调用扩容方法resize(2 * table.length),table长度扩大2倍,然后重新算当前key的hash和位置bucketIndex.
    (3) 调用createEntry()方法,添加节点.

    // 添加节点到链表
                void addEntry(int hash, K key, V value, int bucketIndex) {
                        /*
                        * 扩容机制必须满足两个条件
                        * (1) size大于等于了阈值
                        * (2) 到达阈值的这个值有没有发生hash碰撞
                        *  所以阈值在默认情况下是12 是一个重要节点
                        *  扩容范围是12-27
                        *  最小12进行扩容,最大27时必须进行扩容
                        *  分析最小12扩容
                        *   当size是12时,判断有没有hash碰撞,有扩容,没有继续不扩容.
                        *   分析最大27扩容
                        *   当12没有进行扩容时,size大于阈值就一直满足了
                        *   就只需要判断接下来的hash有没碰撞,有就扩容,没有就不扩容
                        *   最大是一种极端情况,前面11个全部在一个table索引上,接下来
                        *   15个全部没有碰撞,11+15=26,table所有索引全部有值,在插入一个
                        *   值必须碰撞就是26+1=27最大进行扩容
                        * */
                        if ((size >= threshold) && (null != table[bucketIndex])) {
                                // 扩容(方法里面重点讲)
                                resize(2 * table.length);
                                // 计算hash,null时为0
                                hash = (null != key) ? hash(key) : 0;
                                // 计算位置
                                bucketIndex = indexFor(hash, table.length);
                        }
    
                        createEntry(hash, key, value, bucketIndex);
                }

    createEntry方法(在传入位置加入一个节点)

    // 创建一个新的Entry,放在链表的表头,size++
                void createEntry(int hash, K key, V value, int bucketIndex) {
                        // 这里可以理解为当前的第一个节点
                        Entry<K,V> next = table[bucketIndex]; 
                        // 创建一个新的节点,next节点是当前的第一个节点,然后设置到bucketIndex位置
                        table[bucketIndex] = new Entry<>(hash, key, value, next); 
                        size++;
                }

    resize方法(扩容方法,扩容成原来的2倍)
    执行流程:
    (1) 计算oldTable的长度,如果oldTable的长度已经是最大值了,那么就把阈值设置成Integer.MAX_VALUE,return.
    (2) 根据新的容量创建table.
    (3) 调用transfer方法转移数据.
    (4) 将新table赋值给旧table,重新就算阈值.

    void resize(int newCapacity) {
                        Entry[] oldTable = table;
                        int oldCapacity = oldTable.length;
                        // 如果当前值已经是最大值了(2^30),就设置阈值为Integer的最大值
                        if (oldCapacity == MAXIMUM_CAPACITY) {
                                threshold = Integer.MAX_VALUE;
                                return;
                        }
    
                        // 根据传入Capacity重新创建新数组,扩容完成
                        Entry[] newTable = new Entry[newCapacity];
                        // 把原来的数据迁移到新的table(newTable)
                        transfer(newTable, initHashSeedAsNeeded(newCapacity));
                        // 将table设为新table(newTable)
                        table = newTable;
                        // 设置新的阈值
                        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
                }

    transfer方法(负载转移数据,把旧table的数据迁移到新table,至此扩容完成)
    注意:扩容完成后链表的顺序会反转,如下图解释.
    1.7和1.8 HashMap 源码浅析

    // 扩容之后迁移数据(重新计算hash,分配地址),很耗性能
                // 顺便提一下jdk7(get死循环)就是扩容时造成,造成环形链表
                void transfer(Entry[] newTable, boolean rehash) {
                        // 新数组的容量
                        int newCapacity = newTable.length;
                        // 遍历原table
                        for (Entry<K,V> e : table) {
                                // 轮询e不等于null
                                while(null != e) {
                                        // 保存下个元素
                                        Entry<K,V> next = e.next;
                                        if (rehash) {
                                                // 计算出key的hash
                                                e.hash = null == e.key ? 0 : hash(e.key);
                                        }
                                        // 计算出table的位置
                                        int i = indexFor(e.hash, newCapacity);
                                        e.next = newTable[i];
                                        newTable[i] = e;
                                        e = next;
                                }
                        }
                }

    get方法(通过key获取数据)
    执行流程:
    (1) 判断key是否为null,为null调用getForNullKey()方法
    (2) 不为null,调用getEntry方法

    // get方法
                public V get(Object key) {
                        // key等于null
                        if (key == null)
                                return getForNullKey();
                        // 不为null是查找
                        Entry<K,V> entry = getEntry(key);
    
                        return null == entry ? null : entry.getValue();
                }

    getForNullKey()方法(遍历table[0]位置数据,找到key==null的返回)

    private V getForNullKey() {
                        // 没数据
                        if (size == 0) {
                                return null;
                        }
                        // 从table[0]处遍历链表,找到key=null的返回
                        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                                if (e.key == null)
                                        return e.value;
                        }
                        return null;
                }

    getEntry()方法(根据hash算出位置,遍历当前位置的数据,找到key和hash相同的返回)

    final Entry<K,V> getEntry(Object key) {
                        // 没数据
                        if (size == 0) {
                                return null;
                        }
                        // 获取hash
                        int hash = (key == null) ? 0 : hash(key);
                        // 获取table的位置,找到hash和key相同的返回
                        for (Entry<K,V> e = table[indexFor(hash, table.length)];
                                 e != null;
                                 e = e.next) {
                                Object k;
                                if (e.hash == hash &&
                                                ((k = e.key) == key || (key != null && key.equals(k))))
                                        return e;
                        }
                        return null;
                }

    remove()方法

    final Entry<K,V> removeEntryForKey(Object key) {
                        // 没数据
                        if (size == 0) {
                                return null;
                        }
                        // 获取hash
                        int hash = (key == null) ? 0 : hash(key);
                        // 计算位置
                        int i = indexFor(hash, table.length);
                        // 获取i位置的entry
                        Entry<K,V> prev = table[i];
                        Entry<K,V> e = prev;
    
                        // 遍历链表
                        while (e != null) {
                                Entry<K,V> next = e.next;
                                Object k;
                                // 找到了hash和key相等的
                                if (e.hash == hash &&
                                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                                        modCount++;
                                        // 容量减减
                                        size--;
                                        // 说明是第一个元素
                                        // 把头结点设置成他的下一个元素
                                        if (prev == e)
                                                table[i] = next;
                                        // 删除当前e,把上一个元素的next执行当前e.next
                                        // 1 -2 -3-null 删除2,把1的next指向2的next,就是1-3-null
                                        else
                                                prev.next = next;
                                        e.recordRemoval(this);
                                        return e;
                                }
                                prev = e;
                                e = next;
                        }
    
                        return e;
                }

标签:1.7,hash,next,源码,key,Entry,table,null,浅析
来源: https://blog.51cto.com/14220760/2363153

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有