ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

Java线程常用定时任务算法与应用

2022-01-27 21:07:23  阅读:160  来源: 互联网

标签:task Java int t1 delay 任务 线程 定时 执行


目录


1 最小堆

系统或者项目中难免会遇到各种需要自动去执行的任务,实现这些任务的手段也多种多样,如操作系统的crontab,spring框架的quartz,java的Timer和ScheduledThreadPool都是定时任务中的典型手段。

1.1 概述

Timer是java中最典型的基于优先级队列+最小堆实现的定时器,内部维护一个存放定时任务的优先级队列,该优先级队列使用了最小堆排序。当我们调用schedule方法的时候,一个新的任务被加入queue,堆重排,始终保持堆顶是执行时间最小(即最近马上要执行)的。同时,内部相当于起了一个线程不断扫描队列,从队列中依次获取堆顶元素执行,任务得到调度。
下面以Timer为例,介绍优先级队列+最小堆算法的实现原理:

1.2 案例

package com.oldlu.timer;
import java.util.Timer;
import java.util.TimerTask;
class Task extends TimerTask {
    @Override
    public void run() {
        System.out.println("running...");
    }
}
public class TimerDemo {
    public static void main(String[] args) {
        Timer t=new Timer();
        //在1秒后执行,以后每2秒跑一次
        t.schedule(new Task(), 1000,2000);
    }
}

1.3 源码分析

新加任务时,t.schedule方法会add到队列

void add(TimerTask task) {
    // Grow backing store if necessary
    if (size + 1 == queue.length)
        queue = Arrays.copyOf(queue, 2*queue.length);
    queue[++size] = task;
    fixUp(size);
}

add实现了容量维护,不足时扩容,同时将新任务追加到队列队尾,触发堆排序,始终保持堆顶元素最小

//最小堆排序
private void fixUp(int k) {
    while (k > 1) {
        //k指针指向当前新加入的节点,也就是队列的末尾节点,j为其父节点
        int j = k >> 1;
        //如果新加入的执行时间比父节点晚,那不需要动
        if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
            break;
        //如果大于其父节点,父子交换
        TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
        //交换后,当前指针继续指向新加入的节点,继续循环,知道堆重排合格
        k = j;
    }
}

线程调度中的run,主要调用内部mainLoop()方法,使用while循环

private void mainLoop() {
    while (true) {
        try {
            TimerTask task;
            boolean taskFired;
            synchronized(queue) {
                //...
                // Queue nonempty; look at first evt and do the right thing
                long currentTime, executionTime;
                task = queue.getMin();
                synchronized(task.lock) {
//...                    
                    //当前时间
                    currentTime = System.currentTimeMillis();
                    //要执行的时间
                    executionTime = task.nextExecutionTime;
                    //判断是否到了执行时间
                    if (taskFired = (executionTime<=currentTime)) {
                        //判断下一次执行时间,单次的执行完移除
                        //循环的修改下次执行时间
                        if (task.period == 0) { // Non‐repeating, remove
                            queue.removeMin();
                            task.state = TimerTask.EXECUTED;
                        } else { // Repeating task, reschedule
                            //下次时间的计算有两种策略
                            //1.period是负数,那下一次的执行时间就是当前时间‐period
//2.period是正数,那下一次就是该任务本次的执行时间+period                            
                            //注意!这两种策略大不相同。因为Timer是单线程的
                            //如果是1,那么currentTime是当前时间,就受任务执行长短影响
                            //如果是2,那么executionTime是绝对时间戳,与任务长短无关
                            queue.rescheduleMin(
                              task.period<0 ? currentTime ‐ task.period
                                            : executionTime + task.period);
                        }
                    }
                }
                //不到执行时间,等待
                if (!taskFired) // Task hasn't yet fired; wait
                    queue.wait(executionTime ‐ currentTime);
            }
            //到达执行时间,run!
            if (taskFired)  // Task fired; run it, holding no locks
                task.run();
        } catch(InterruptedException e) {
        }
    }
}

1.4 应用

本节使用Timer为了介绍算法原理,但是Timer已过时,实际应用中推荐使用
ScheduledThreadPoolExecutor(同样内部使用DelayedWorkQueue和最小堆排序)
Timer是单线程,一旦一个失败或出现异常,将打断全部任务队列,线程池不会
Timer在jdk1.3+,而线程池需要jdk1.5+

2 时间轮

2.1 概述

时间轮是一种更为常见的定时调度算法,各种操作系统的定时任务调度,linux crontab,基于java的通信框架
Netty等。其灵感来源于我们生活中的时钟。
轮盘实际上是一个头尾相接的环状数组,数组的个数即是插槽数,每个插槽中可以放置任务。
以1天为例,将任务的执行时间%12,根据得到的数值,放置在时间轮上,小时指针沿着轮盘扫描,扫到的点取出
任务执行:
在这里插入图片描述
问题:比如3点钟,有多个任务执行怎么办?
答案:在每个槽上设置一个队列,队列可以无限追加,解决时间点冲突问题(类似HashMap结构)
在这里插入图片描述
问题:每个轮盘的时间有限,比如1个月后的第3天的5点怎么办?
方案一:加长时间刻度,扩充到1年
优缺点:简单,占据大量内存,即使插槽没有任务也要空轮询,白白的资源浪费,时间、空间复杂度都高
方案二:每个任务记录一个计数器,表示转多少圈后才会执行。没当指针过来后,计数器减1,减到0的再执行
优缺点:每到一个指针都需要取出链表遍历判断,时间复杂度高,但是空间复杂度低
方案三:设置多个时间轮,年轮,月轮,天轮。1天内的放入天轮,1年后的则放入年轮,当年轮指针读到后,将任
务取出,放入下一级的月轮对应的插槽,月轮再到天轮,直到最小精度取到,任务被执行。
优缺点:不需要额外的遍历时间,但是占据了多个轮的空间。空间复杂度升高,但是时间复杂度降低

2.2 java实现

定义Task类

package com.oldlu.timer;
public class RoundTask {
    //延迟多少秒后执行
    int delay;
    //加入的序列号,只是标记一下加入的顺序
    int index;
    public RoundTask(int index, int delay) {
        this.index = index;
        this.delay = delay;
    }
    void run() {
        System.out.println("task " + index + " start , delay = "+delay);
    }
    @Override
    public String toString() {
        return String.valueOf(index+"="+delay);
    }
}

时间轮算法:

package com.oldlu.timer;
import java.util.LinkedList;
import java.util.Random;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class RoundDemo {
    //小轮槽数
    int size1=10;
    //大轮槽数
    int size2=5;
    //小轮,数组,每个元素是一个链表
    LinkedList<RoundTask>[] t1 = new LinkedList[size1];
    //大轮
    LinkedList<RoundTask>[] t2 = new LinkedList[size2];
    //小轮计数器,指针跳动的格数,每秒加1
    final AtomicInteger flag1=new AtomicInteger(0);
    //大轮计数器,指针跳动个格数,即每10s加1
    final AtomicInteger flag2=new AtomicInteger(0);
    //调度器,拖动指针跳动
    ScheduledExecutorService service = Executors.newScheduledThreadPool(2);
    public RoundDemo(){
        //初始化时间轮
        for (int i = 0; i < size1; i++) {
            t1[i]=new LinkedList<>();
        }
        for (int i = 0; i < size2; i++) {
            t2[i]=new LinkedList<>();
        }
    }
    //打印时间轮的结构,数组+链表
    void print(){
        System.out.println("t1:");
        for (int i = 0; i < t1.length; i++) {
            System.out.println(t1[i]);
        }
        System.out.println("t2:");
        for (int i = 0; i < t2.length; i++) {
            System.out.println(t2[i]);
        }
    }
    //添加任务到时间轮
    void add(RoundTask task){
        int delay = task.delay;
        if (delay < size1){
            //10以内的,在小轮
            t1[delay].addLast(task);
 }else {
            //超过小轮的放入大轮,槽除以小轮的长度
            t2[delay/size1].addLast(task);
        }
    }
    void startT1(){
        //每秒执行一次,推动时间轮旋转,取到任务立马执行
        service.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                int point = flag1.getAndIncrement()%size1;
                System.out.println("t1 ‐‐‐‐‐> slot "+point);
                LinkedList<RoundTask> list = t1[point];
                if (!list.isEmpty()){
                    //如果当前槽内有任务,取出来,依次执行,执行完移除
                    while (list.size() != 0){
                        list.getFirst().run();
                        list.removeFirst();
                    }
                }
            }
        },0,1, TimeUnit.SECONDS);
    }
    void startT2(){
        //每10秒执行一次,推动时间轮旋转,取到任务下方到t1
        service.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                int point = flag2.getAndIncrement()%size2;
                System.out.println("t2 =====> slot "+point);
                LinkedList<RoundTask> list = t2[point];
                if (!list.isEmpty()){
                    //如果当前槽内有任务,取出,放到定义的小轮
                    while (list.size() != 0){
                        RoundTask task = list.getFirst();
                        //放入小轮哪个槽呢?小轮的槽按10取余数
                        t1[task.delay % size1].addLast(task);
                        //从大轮中移除
                        list.removeFirst();
                    }
                }
            }
        },0,10, TimeUnit.SECONDS);
    }
    public static void main(String[] args) {
        RoundDemo roundDemo = new RoundDemo();
        //生成100个任务,每个任务的延迟时间随机
        for (int i = 0; i < 100; i++) {
            roundDemo.add(new RoundTask(i,new Random().nextInt(50)));
        }
  //打印,查看时间轮任务布局
        roundDemo.print();
        //启动大轮
        roundDemo.startT2();
        //小轮启动
        roundDemo.startT1();
    }
}

2.3 结果分析

在这里插入图片描述
输出结果严格按delay顺序执行,而不管index是何时被提交的
t1为小轮,10个槽,每个1s,10s一轮回
t2为大轮,5个槽,每个10s,50s一轮回
t1循环到每个槽时,打印槽内的任务数据,如 t1–>slot9 , 打印了3个9s执行的数据
t2循环到每个槽时,将槽内的任务delay时间取余10后,放入对应的t1槽中,如 t2==>slot1
那么t1旋转对应的圈数后,可以取到t2下放过来的任务并执行,如10,11…

标签:task,Java,int,t1,delay,任务,线程,定时,执行
来源: https://blog.csdn.net/ZGL_cyy/article/details/122718213

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有