ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

【Flink】Flink 源码之时间处理

2022-01-16 14:01:26  阅读:244  来源: 互联网

标签:watermark 处理 timestamp Flink long 源码 timer Override public


在这里插入图片描述

1.概述

转载:Flink 源码之时间处理

2.Flink支持的时间类型

  • EventTime: 每条数据都携带时间戳。Operator处理数据的时候所有依赖时间的操作依据数据携带的时间戳。可以支持乱序数据的处理。时间戳信息可以在数据源产生数据的时候指定(SourceFunction的中调用context的collectWithTimestamp收集元素),也可以使用DataStream的assignTimestampsAndWatermarks指定。通常来说在每条数据中会有一个字段存储时间戳信息。
  • ProcessingTime: 数据不携带任何时间戳的信息。operator使用系统当前时间作为每一条数据的处理时间。如果数据存在乱序的情况,Flink无法察觉。ProcessingTime为系统的默认值。
  • IngestionTime: 和EventTime 类似,不同的是Flink会使用系统时间作为timestamp绑定到每条数据(数据进入Flink系统的时候使用系统当前时间为时间戳绑定数据)。可以防止Flink内部处理数据是发生乱序的情况。但无法解决数据到达Flink之前发生的乱序问题。如果需要处理此类问题,建议使用EventTime。

3.设置Flink系统使用的时间类型

使用Environment的setStreamTimeCharacteristic方法指定系统使用的时间类型。方法参数为TimeCharacteristic

TimeCharacteristic为枚举类型,定义如下。

@PublicEvolving
public enum TimeCharacteristic {
    ProcessingTime,
    IngestionTime,
    EventTime
}

和之前所说的时间类型一一对应。

StreamExecutionEnvironmentsetStreamTimeCharacteristic方法源码如下:

@PublicEvolving
public void setStreamTimeCharacteristic(TimeCharacteristic characteristic) {
    this.timeCharacteristic = Preconditions.checkNotNull(characteristic);
    if (characteristic == TimeCharacteristic.ProcessingTime) {
        getConfig().setAutoWatermarkInterval(0);
    } else {
        getConfig().setAutoWatermarkInterval(200);
    }
}

这里我们发现如果系统TimeCharacteristicEventTime或者IngestionTime,会设置一个默认的自动watermark间隔时间(auto watermark interval)。这个参数是用来对齐集群中所有机器的watermark的。所有发送到下游的watermark一定是auto watermark interval的整数倍(通过源码分析发现该配置仅对IngestionTime生效)。具体逻辑在下文StreamSourceContexts部分分析。

4.StreamSourceContexts

StreamSourceContexts类负责根据系统的TimeCharacteristic来决定生成哪种类型的SourceContext。SourceContext在SourceFunction使用(参见 Flink 使用之数据源),不同的SourceContext对数据timestamp处理的行为不同。

SourceFunction中使用的SourceContext由getSourceContext方法决定。

getSourceContext方法的调用链如下所示:

  • SourceStreamTask中的LegacySourceFunctionThread.run: headOperator.run(getCheckpointLock(), getStreamStatusMaintainer(), operatorChain); 在这一行代码中传入了StreamStatusMaintainer。可以追溯到StreamTask的getStreamStatusMaintainer方法,返回的是一个OperatorChain。
  • StreamSource.run: this.ctx = StreamSourceContexts.getSourceContext

getSourceContext方法的源码如下:

public static <OUT> SourceFunction.SourceContext<OUT> getSourceContext(
        TimeCharacteristic timeCharacteristic,
        ProcessingTimeService processingTimeService,
        Object checkpointLock,
        StreamStatusMaintainer streamStatusMaintainer,
        Output<StreamRecord<OUT>> output,
        long watermarkInterval,
        long idleTimeout) {

    final SourceFunction.SourceContext<OUT> ctx;
    switch (timeCharacteristic) {
        case EventTime:
            ctx = new ManualWatermarkContext<>(
                output,
                processingTimeService,
                checkpointLock,
                streamStatusMaintainer,
                idleTimeout);

            break;
        case IngestionTime:
            ctx = new AutomaticWatermarkContext<>(
                output,
                watermarkInterval,
                processingTimeService,
                checkpointLock,
                streamStatusMaintainer,
                idleTimeout);

            break;
        case ProcessingTime:
            ctx = new NonTimestampContext<>(checkpointLock, output);
            break;
        default:
            throw new IllegalArgumentException(String.valueOf(timeCharacteristic));
    }
    return ctx;
}

从源码可以看出,SourceContext有三种:

  • EventTime使用ManualWatermarkContext
  • ProcessingTime使用NonTimestampContext
  • IngestionTime使用AutomaticWatermarkContext

其中ManualWatermarkContextAutomaticWatermarkContext具有相同的父类WatermarkContext。

下面逐个分析WatermarkContext的方法。

4.1 WatermarkContext类

 @Override
        public void collect(T element) {
            // 防止和checkpoint操作同时进行
            synchronized (checkpointLock) {
                // 改变stream的状态为ACTIVE状态
                streamStatusMaintainer.toggleStreamStatus(StreamStatus.ACTIVE);

                if (nextCheck != null) {
                    // failOnNextCheck:如果下一个空闲检查已被安排,需要设置为true。当元素被collect之后,需要设置该变量为false。
                    this.failOnNextCheck = false;
                } else {
                    scheduleNextIdleDetectionTask();
                }

                processAndCollect(element);
            }
        }

WatermarkContext的streamStatusMaintainer只有一个实现类OperatorChain。该变量由StreamTaskoperatorChain传入。

nextCheckScheduledFuture类型。

failOnNextCheck:如果下一个空闲检查已被安排,需要设置为true。当元素被collect之后,需要设置该变量为false。

如果没有安排下一次空闲检查,需要调用scheduleNextIdleDetectionTask。代码稍后分析。

最后调用processAndCollect方法,包含具体的处理和收集数据的逻辑。该方法为抽象方法,稍后分析。

scheduleNextIdleDetectionTask代码如下:

private void scheduleNextIdleDetectionTask() {
    if (idleTimeout != -1) {
        // reset flag; if it remains true when task fires, we have detected idleness
        failOnNextCheck = true;
        // 安排一个空闲检测任务。该任务在idleTimeout之后执行
        // getCurrentProcessingTime()返回的是系统当前时间
        nextCheck = this.timeService.registerTimer(
            this.timeService.getCurrentProcessingTime() + idleTimeout,
            new IdlenessDetectionTask());
    }
}

IdlenessDetectionTask的源码如下:

private class IdlenessDetectionTask implements ProcessingTimeCallback {
    @Override
    public void onProcessingTime(long timestamp) throws Exception {
        synchronized (checkpointLock) {
            // set this to null now;
            // the next idleness detection will be scheduled again
            // depending on the below failOnNextCheck condition
            // 设置nextCheck为null
            // 这样下次调用collect方法的时候会再次安排一个空闲检测任务
            nextCheck = null;

            if (failOnNextCheck) {
                // 标记数据源为空闲
                markAsTemporarilyIdle();
            } else {
                // 再次安排一个空闲检测任务
                scheduleNextIdleDetectionTask();
            }
        }
    }
}

markAsTemporarilyIdle方法:

@Override
public void markAsTemporarilyIdle() {
    synchronized (checkpointLock) {
        // 设置operatorChain的状态为空闲
        streamStatusMaintainer.toggleStreamStatus(StreamStatus.IDLE);
    }
}

经过以上分析我们不难发现collect方法具有自动空闲检测的功能。数据被收集的时候会设置stream为active状态,并设置一个空闲检查任务。该任务会在idleTimeout时间之后触发。如果在此期间内,仍没有数据被数据源采集,该数据源会被标记为空闲。如果期间内有数据到来,failOnNextCheck会被设置为false。此时空闲检测任务执行之后便不会标记数据源为空闲状态,取而代之的是再次安排一个空闲检测任务。

collectWithTimestamp方法在收集元素的同时,为元素绑定时间戳。代码如下:

@Override
public void collectWithTimestamp(T element, long timestamp) {
    synchronized (checkpointLock) {
        streamStatusMaintainer.toggleStreamStatus(StreamStatus.ACTIVE);

        if (nextCheck != null) {
            this.failOnNextCheck = false;
        } else {
            scheduleNextIdleDetectionTask();
        }

        processAndCollectWithTimestamp(element, timestamp);
    }
}

这段方法和collect方法的逻辑完全一致。同样具有定期检测数据源是否闲置的功能。在方法最后调用了子类的processAndCollectWithTimestamp方法。

emitWatermark方法用于向下游发送watermark。代码如下:

@Override
public void emitWatermark(Watermark mark) {
    // 此处多了一个判断,在允许使用watermark的情形下才会调用
    if (allowWatermark(mark)) {
        synchronized (checkpointLock) {
            streamStatusMaintainer.toggleStreamStatus(StreamStatus.ACTIVE);

            if (nextCheck != null) {
                this.failOnNextCheck = false;
            } else {
                scheduleNextIdleDetectionTask();
            }

            processAndEmitWatermark(mark);
        }
    }
}

此方法的逻辑和collect方法逻辑基本一致,不再赘述。

close方法用于关闭SourceContext,该方法会取消下一次空闲检测任务。代码如下:

@Override
public void close() {
    cancelNextIdleDetectionTask();
}

4.2 ManualWatermarkContext 类

EventTime时间类型使用的是ManualWatermarkContext。ManualWatermarkContext相比父类多了两个成员变量:

  • output: 负责输出数据流中的元素。对于StreamSource而言output为AbstractStreamOperator$CountingOutput包装的RecordWriterOutput
  • reuse:数据流中一个元素的包装类。该类在此被复用,不必反复创建。

ManualWatermarkContext实现父类的方法如下:

@Override
protected void processAndCollect(T element) {
    output.collect(reuse.replace(element));
}

@Override
protected void processAndCollectWithTimestamp(T element, long timestamp) {
    output.collect(reuse.replace(element, timestamp));
}

@Override
protected void processAndEmitWatermark(Watermark mark) {
    output.emitWatermark(mark);
}

@Override
protected boolean allowWatermark(Watermark mark) {
    // 永远允许发送watermark,所以返回true
    return true;
}

4.3 AutomaticWatermarkContext 类

IngestionTime时间类型使用的是AutomaticWatermarkContext。
此类的构造方法如下:

private AutomaticWatermarkContext(
        final Output<StreamRecord<T>> output,
        final long watermarkInterval,
        final ProcessingTimeService timeService,
        final Object checkpointLock,
        final StreamStatusMaintainer streamStatusMaintainer,
        final long idleTimeout) {

    super(timeService, checkpointLock, streamStatusMaintainer, idleTimeout);

    this.output = Preconditions.checkNotNull(output, "The output cannot be null.");

    Preconditions.checkArgument(watermarkInterval >= 1L, "The watermark interval cannot be smaller than 1 ms.");

    // 通过 auto watermark interval配置
    this.watermarkInterval = watermarkInterval;

    this.reuse = new StreamRecord<>(null);

    this.lastRecordTime = Long.MIN_VALUE;

    // 获取系统当前时间
    long now = this.timeService.getCurrentProcessingTime();
    // 设置一个watermark发送定时器,在watermarkInterval时间之后触发
    this.nextWatermarkTimer = this.timeService.registerTimer(now + watermarkInterval,
        new WatermarkEmittingTask(this.timeService, checkpointLock, output));
}

WatermarkEmittingTask主要代码逻辑如下:

@Override
public void onProcessingTime(long timestamp) {
    // 获取系统当前时间
    final long currentTime = timeService.getCurrentProcessingTime();

    // 加锁,不能和checkpoint操作同时运行
    synchronized (lock) {
        // we should continue to automatically emit watermarks if we are active
        // 需要OperatorChain的状态为ACTIVE
        if (streamStatusMaintainer.getStreamStatus().isActive()) {
            // idleTimeout 不等于-1意味着设置了数据源的空闲超时时间
            // 发送watermark的时候也检查数据源空闲时间
            if (idleTimeout != -1 && currentTime - lastRecordTime > idleTimeout) {
                // if we are configured to detect idleness, piggy-back the idle detection check on the
                // watermark interval, so that we may possibly discover idle sources faster before waiting
                // for the next idle check to fire
                markAsTemporarilyIdle();

                // no need to finish the next check, as we are now idle.
                cancelNextIdleDetectionTask();
            } else if (currentTime > nextWatermarkTime) {
                // align the watermarks across all machines. this will ensure that we
                // don't have watermarks that creep along at different intervals because
                // the machine clocks are out of sync
                // 取watermarkTime 为最接近currentTime 的watermarkInterval整数倍
                // 这称为watermark对齐操作,因为集群机器的时间是不同步的
                final long watermarkTime = currentTime - (currentTime % watermarkInterval);
                // 发送watermark
                output.emitWatermark(new Watermark(watermarkTime));
                // 设置下次发送的watermark的时间,注意和下次执行发送watermark任务的时间不同
                nextWatermarkTime = watermarkTime + watermarkInterval;
            }
        }
    }

    // 再次安排一个watermark发送任务
    long nextWatermark = currentTime + watermarkInterval;
    nextWatermarkTimer = this.timeService.registerTimer(
            nextWatermark, new WatermarkEmittingTask(this.timeService, lock, output));
}

通过以上分析我们不难发现AutomaticWatermarkContext是自动定时发送watermark到下游的。发送的间隔为watermarkInterval。

processAndCollect方法和逻辑如下所示:

@Override
protected void processAndCollect(T element) {
    lastRecordTime = this.timeService.getCurrentProcessingTime();
    output.collect(reuse.replace(element, lastRecordTime));

    // this is to avoid lock contention in the lockingObject by
    // sending the watermark before the firing of the watermark
    // emission task.
    // lastRecordTime如果大于nextWatermarkTime需要立即发送一次watermark
    // nextWatermarkTime为下次要发送的watermark的时间,和下次执行发送watermark任务的时间不同
    // 发送的watermark的时间一定比执行发送watermark任务的时间早
    // 如果没有此判断,到下次发送watermark任务执行之后,发送的watermark时间会早于这条数据的时间,下游不会及时处理这条数据。
    if (lastRecordTime > nextWatermarkTime) {
        // in case we jumped some watermarks, recompute the next watermark time
        final long watermarkTime = lastRecordTime - (lastRecordTime % watermarkInterval);
        // nextWatermarkTime比lastRecordTime大
        // 因此下游会立即开始处理这条数据
        nextWatermarkTime = watermarkTime + watermarkInterval;
        output.emitWatermark(new Watermark(watermarkTime));

        // we do not need to register another timer here
        // because the emitting task will do so.
    }
}

processAndCollectWithTimestamp方法如下所示。第二个参数timestamp被忽略。IngestionTime使用系统时间作为元素绑定时间。

@Override
protected void processAndCollectWithTimestamp(T element, long timestamp) {
    processAndCollect(element);
}

最后我们分析下allowWatermarkprocessAndEmitWatermark方法。AutomaticWatermarkContext不允许我们显式要求发送watermark。只能通过定时任务发送。只有当waterMark时间为Long.MAX_VALUE并且nextWatermarkTime不为Long.MAX_VALUE才可以发送。发送过这个特殊的watermark之后,关闭定时发送watermark的任务。代码如下所示:

@Override
protected boolean allowWatermark(Watermark mark) {
    // allow Long.MAX_VALUE since this is the special end-watermark that for example the Kafka source emits
    return mark.getTimestamp() == Long.MAX_VALUE && nextWatermarkTime != Long.MAX_VALUE;
}

/** This will only be called if allowWatermark returned {@code true}. */
@Override
protected void processAndEmitWatermark(Watermark mark) {
    nextWatermarkTime = Long.MAX_VALUE;
    output.emitWatermark(mark);

    // we can shutdown the watermark timer now, no watermarks will be needed any more.
    // Note that this procedure actually doesn't need to be synchronized with the lock,
    // but since it's only a one-time thing, doesn't hurt either
    final ScheduledFuture<?> nextWatermarkTimer = this.nextWatermarkTimer;
    if (nextWatermarkTimer != null) {
        nextWatermarkTimer.cancel(true);
    }
}

4.4 NonTimestampContext 类

这个类比较简单,不处理任何和timestamp相关的逻辑。也不会发送任何watermark。在此不做过多的分析。

5 ProcessingTime 调用链

InternalTimeServiceImpl.registerProcessingTimeTimer
SystemProcessingTimeService.registerTimer
SystemProcessingTimeService.wrapOnTimerCallback
ScheduledTask.run
TimerInvocationContext.invoke
InternalTimeServiceImpl.onProcessingTime(): triggerTarget.onProcessingTime(timer);

4.5.1 InternalTimeServiceImpl.registerProcessingTimeTimer

registerProcessingTimeTimer方法注册一个ProcessingTime定时器:

@Override
// 该方法主要在windowOperator和SimpleTimerService中调用
// 在windowOperator调用,namespace传入当前window
// 在SimpleTimerService调用,namespace传入VoidNamespace.INSTANCE
public void registerProcessingTimeTimer(N namespace, long time) {
    // 这是一个PriorityQueue。获取timestamp最小的timer
    InternalTimer<K, N> oldHead = processingTimeTimersQueue.peek();
    // 如果新加入的timer的timestamp是最小的,方法返回true
    if (processingTimeTimersQueue.add(new TimerHeapInternalTimer<>(time, (K) keyContext.getCurrentKey(), namespace))) {
        long nextTriggerTime = oldHead != null ? oldHead.getTimestamp() : Long.MAX_VALUE;
        // check if we need to re-schedule our timer to earlier
        // 如果新加入的timer的timetstamp在队列中最小(最先执行)
        // 需要取消掉原有的timer
        // 再重新注册timer,timestamp为新加入timer的timetstamp
        if (time < nextTriggerTime) {
            if (nextTimer != null) {
                nextTimer.cancel(false);
            }
            nextTimer = processingTimeService.registerTimer(time, this);
        }
    }
}

InternalTimeServiceImpl维护了一个processingTimeTimersQueue变量。该变量是一个有序的队列,存储了一系列定时器对象。

InternalTimeServiceManager在获取InternalTimeServiceImpl会调用它的startTimerService方法。该方法会把第一个(时间最早的timer)注册到一个ScheduledThreadPoolExecutor上。因此第一个timer到时间的时候会调用InternalTimeServiceImplonProcessingTime方法。

InternalTimeServiceImpl的onProcessingTime方法代码如下:

@Override
public void onProcessingTime(long time) throws Exception {
    // null out the timer in case the Triggerable calls registerProcessingTimeTimer()
    // inside the callback.
    nextTimer = null;

    InternalTimer<K, N> timer;

    // 一直循环获取时间小于参数time的所有定时器,并运行triggerTarget的onProcessingTime方法
    // 例如WindowOperator中的internalTimerService,triggerTarget就是WindowOperator自身
    while ((timer = processingTimeTimersQueue.peek()) != null && timer.getTimestamp() <= time) {
        processingTimeTimersQueue.poll();
        keyContext.setCurrentKey(timer.getKey());
        triggerTarget.onProcessingTime(timer);
    }

    // 执行到这一步的时候timer的timetamp刚好大于参数time
    // 此时在安排下一个定时器
    if (timer != null && nextTimer == null) {
        nextTimer = processingTimeService.registerTimer(timer.getTimestamp(), this);
    }
}

由以上分析可知processingTimeTimersQueue的timer中,始终会有一个timestamp最小的timer被注册为定时任务。每次触发定时器总会有一个timestamp刚好大于该定时器timestamp的定时器(来自processingTimeTimersQueue)被安排定时执行。

4.5.2 SystemProcessingTimeService.registerTimer

上部分 InternalTimeServiceImpl.registerProcessingTimeTimer会调用
SystemProcessingTimeService.registerTimer方法。其源代码如下:

@Override
public ScheduledFuture<?> registerTimer(long timestamp, ProcessingTimeCallback callback) {

    // delay the firing of the timer by 1 ms to align the semantics with watermark. A watermark
    // T says we won't see elements in the future with a timestamp smaller or equal to T.
    // With processing time, we therefore need to delay firing the timer by one ms.
    // 此处计算delay的值
    // 依照英文注释所言,这里额外延迟1ms触发是要和watermark的语义一致
    long delay = Math.max(timestamp - getCurrentProcessingTime(), 0) + 1;

    // we directly try to register the timer and only react to the status on exception
    // that way we save unnecessary volatile accesses for each timer
    try {
        // 这里schedule一个timer
        // wrapOnTimerCallback返回一个ScheduledTask对象
        // ScheduledTask对象封装了定时timestamp和定时执行的任务逻辑
        return timerService.schedule(wrapOnTimerCallback(callback, timestamp), delay, TimeUnit.MILLISECONDS);
    }
    catch (RejectedExecutionException e) {
        final int status = this.status.get();
        if (status == STATUS_QUIESCED) {
            return new NeverCompleteFuture(delay);
        }
        else if (status == STATUS_SHUTDOWN) {
            throw new IllegalStateException("Timer service is shut down");
        }
        else {
            // something else happened, so propagate the exception
            throw e;
        }
    }
}

4.5.3 InternalTimeServiceImpl创建逻辑

一个Operator持有一个InternalTimeServiceImpl实例。调用链如下:

  • AbstractStreamOperator.getInternalTimerService
  • InternalTimeServiceManager.registerOrGetTimerService
    另外,SystemProcessingTimeService在StreamTask的invoke方法中创建。

6.EventTime 调用逻辑

各个Task接收watermark到响应watermark事件的调用链如下:

StreamTaskNetworkInput.processElement
StatusWatermarkValve.inputWatermark
StatusWatermarkValve.findAndOutputNewMinWatermarkAcrossAlignedChannels
OneInputStreamTask.emitWatermark
AbstractStreamOperator.processWatermark
InternalTimeServiceManager.advanceWatermark
InternalTimeServiceImpl.advanceWatermark: triggerTarget.onEventTime(timer);

以windowOperator为例。如果系统的TimeCharacteristic设置的是EventTime,每次元素到来之后都会注册一个EventTime定时器,时间为window结束时间。

6.1 InternalTimeServiceImpl.registerEventTimeTimer

@Override
public void registerEventTimeTimer(N namespace, long time) {
    eventTimeTimersQueue.add(new TimerHeapInternalTimer<>(time, (K) keyContext.getCurrentKey(), namespace));
}

注册一个EventTime定时器就是在eventTimeTimersQueue中添加一个timer。eventTimeTimersQueueprocessingTimeTimersQueue结构完全一样。只不过是用于专门存放EventTime的定时器。下面的问题就是什么时候Flink会使用这些timer触发计算呢?

6.2 InternalTimeServiceImpl.advanceWatermark

这个方法在接收到watermark的时候调用。主要逻辑为从eventTimeTimersQueue中依次取出触发时间小于参数time的所有定时器,调用triggerTarget.onEventTime方法。triggerTarget.onEventTime含有operator基于eventTime计算的具体逻辑。

advanceWatermark方法代码如下:

public void advanceWatermark(long time) throws Exception {
    currentWatermark = time;

    InternalTimer<K, N> timer;

    while ((timer = eventTimeTimersQueue.peek()) != null && timer.getTimestamp() <= time) {
        eventTimeTimersQueue.poll();
        keyContext.setCurrentKey(timer.getKey());
        triggerTarget.onEventTime(timer);
    }
}

上面的方法在InternalTimeServiceManager中调用。InternalTimeServiceManager的advanceWatermark方法循环调用内部所有InternalTimerService的advanceWatermark方法。

public void advanceWatermark(Watermark watermark) throws Exception {
    for (InternalTimerServiceImpl<?, ?> service : timerServices.values()) {
        service.advanceWatermark(watermark.getTimestamp());
    }
}

该方法的调用在AbstractStreamOperator的processWatermark中,代码如下:

public void processWatermark(Watermark mark) throws Exception {
    if (timeServiceManager != null) {
        timeServiceManager.advanceWatermark(mark);
    }
    // 向下游继续发送watermark
    output.emitWatermark(mark);
}

按照调用链,我们继续跟踪到OneInputStreamTask的emitWatermark方法:

@Override
public void emitWatermark(Watermark watermark) throws Exception {
    synchronized (lock) {
        watermarkGauge.setCurrentWatermark(watermark.getTimestamp());
        operator.processWatermark(watermark);
    }
}

接下来是StatusWatermarkValve的findAndOutputNewMinWatermarkAcrossAlignedChannels方法:

private void findAndOutputNewMinWatermarkAcrossAlignedChannels() throws Exception {
    long newMinWatermark = Long.MAX_VALUE;
    boolean hasAlignedChannels = false;

    // determine new overall watermark by considering only watermark-aligned channels across all channels
    for (InputChannelStatus channelStatus : channelStatuses) {
        // 阅读inputStreamStatus方法可知input channel变为空闲状态的时候watermark对齐状态为false
        // 获取所有对齐状态channel的watermark最小值
        if (channelStatus.isWatermarkAligned) {
            hasAlignedChannels = true;
            newMinWatermark = Math.min(channelStatus.watermark, newMinWatermark);
        }
    }

    // we acknowledge and output the new overall watermark if it really is aggregated
    // from some remaining aligned channel, and is also larger than the last output watermark
    // 发送watermark
    if (hasAlignedChannels && newMinWatermark > lastOutputWatermark) {
        lastOutputWatermark = newMinWatermark;
        output.emitWatermark(new Watermark(lastOutputWatermark));
    }
}

接下来分析inputWatermark方法:

public void inputWatermark(Watermark watermark, int channelIndex) throws Exception {
    // ignore the input watermark if its input channel, or all input channels are idle (i.e. overall the valve is idle).
    if (lastOutputStreamStatus.isActive() && channelStatuses[channelIndex].streamStatus.isActive()) {
        long watermarkMillis = watermark.getTimestamp();

        // if the input watermark's value is less than the last received watermark for its input channel, ignore it also.
        if (watermarkMillis > channelStatuses[channelIndex].watermark) {
            // 更新channel的watermark
            channelStatuses[channelIndex].watermark = watermarkMillis;

            // previously unaligned input channels are now aligned if its watermark has caught up
            // 设置channel的watermark对齐状态为true
            // 该channel之前是空闲状态,且watermark已被更新,因此这里设置其对齐状态为true
            if (!channelStatuses[channelIndex].isWatermarkAligned && watermarkMillis >= lastOutputWatermark) {
                channelStatuses[channelIndex].isWatermarkAligned = true;
            }

            // now, attempt to find a new min watermark across all aligned channels
            // 调用上个代码片段的方法
            findAndOutputNewMinWatermarkAcrossAlignedChannels();
        }
    }
}

最后我们跟踪到调用inputWatermark方法的位置在StreamTaskNetworkInput的processElement方法:

private void processElement(StreamElement recordOrMark, DataOutput<T> output) throws Exception {
    if (recordOrMark.isRecord()){
        output.emitRecord(recordOrMark.asRecord());
    } else if (recordOrMark.isWatermark()) {
        statusWatermarkValve.inputWatermark(recordOrMark.asWatermark(), lastChannel);
    } else if (recordOrMark.isLatencyMarker()) {
        output.emitLatencyMarker(recordOrMark.asLatencyMarker());
    } else if (recordOrMark.isStreamStatus()) {
        statusWatermarkValve.inputStreamStatus(recordOrMark.asStreamStatus(), lastChannel);
    } else {
        throw new UnsupportedOperationException("Unknown type of StreamElement");
    }
}

很明显,该方法判断接收到元素的类型调用对应的处理逻辑。再向上跟踪就是Task之间传递数据的逻辑,会在后续博客中分析。

7.TimestampAssigner

经过上面的分析我们已经了解了operator是怎样的传递和响应接收到的watermark的。接下来还有一个地方需要研究,那就是watermark是怎样的产生的。

watermark可以在两个地方产生:

  • 数据源调用emitWatermark方法。博客开头StreamSourceContexts部分已经分析了源码。此处不再赘述。
  • 调用DataStream的assignTimestampsAndWatermarks方法。

assignTimestampsAndWatermarks有两个版本,一个接收AssignerWithPeriodicWatermarks另一个是AssignerWithPunctuatedWatermarks。我们先看源代码,稍后分析他们的不同之处。

AssignerWithPeriodicWatermarks版本的代码如下所示:

public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks(
        AssignerWithPeriodicWatermarks<T> timestampAndWatermarkAssigner) {

    // match parallelism to input, otherwise dop=1 sources could lead to some strange
    // behaviour: the watermark will creep along very slowly because the elements
    // from the source go to each extraction operator round robin.
    final int inputParallelism = getTransformation().getParallelism();
    final AssignerWithPeriodicWatermarks<T> cleanedAssigner = clean(timestampAndWatermarkAssigner);

    TimestampsAndPeriodicWatermarksOperator<T> operator =
            new TimestampsAndPeriodicWatermarksOperator<>(cleanedAssigner);

    return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator)
            .setParallelism(inputParallelism);
}

AssignerWithPunctuatedWatermarks版本的代码如下所示:

public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks(
        AssignerWithPunctuatedWatermarks<T> timestampAndWatermarkAssigner) {

    // match parallelism to input, otherwise dop=1 sources could lead to some strange
    // behaviour: the watermark will creep along very slowly because the elements
    // from the source go to each extraction operator round robin.
    final int inputParallelism = getTransformation().getParallelism();
    final AssignerWithPunctuatedWatermarks<T> cleanedAssigner = clean(timestampAndWatermarkAssigner);

    TimestampsAndPunctuatedWatermarksOperator<T> operator =
            new TimestampsAndPunctuatedWatermarksOperator<>(cleanedAssigner);

    return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator)
            .setParallelism(inputParallelism);
}

这两个版本的代码基本一致,仅仅是使用的operator不同。

TimestampsAndPeriodicWatermarksOperator

首先我们分析下TimestampsAndPeriodicWatermarksOperator源码。如下所示:

public class TimestampsAndPeriodicWatermarksOperator<T>
        extends AbstractUdfStreamOperator<T, AssignerWithPeriodicWatermarks<T>>
        implements OneInputStreamOperator<T, T>, ProcessingTimeCallback {

    private static final long serialVersionUID = 1L;

    private transient long watermarkInterval;

    private transient long currentWatermark;

    public TimestampsAndPeriodicWatermarksOperator(AssignerWithPeriodicWatermarks<T> assigner) {
        super(assigner);
        // 允许此operator和它前后的其他operator形成operator chain
        this.chainingStrategy = ChainingStrategy.ALWAYS;
    }

    @Override
    public void open() throws Exception {
        super.open();

        currentWatermark = Long.MIN_VALUE;
        // 获取env中配置的自动watermark触发间隔
        watermarkInterval = getExecutionConfig().getAutoWatermarkInterval();

        if (watermarkInterval > 0) {
            long now = getProcessingTimeService().getCurrentProcessingTime();
            // 注册一个processing time定时器,在watermarkInterval之后触发,调用本类的onProcessingTime方法
            getProcessingTimeService().registerTimer(now + watermarkInterval, this);
        }
    }

    @Override
    public void processElement(StreamRecord<T> element) throws Exception {
        // 调用用户传入的TimestampAssigner的extractTimestamp方法,获取timestamp
        final long newTimestamp = userFunction.extractTimestamp(element.getValue(),
                element.hasTimestamp() ? element.getTimestamp() : Long.MIN_VALUE);
        // 收集此元素和timestamp并发往下游
        output.collect(element.replace(element.getValue(), newTimestamp));
    }

    @Override
        // open方法中注册的定时器触发的时候执行此方法
    public void onProcessingTime(long timestamp) throws Exception {
        // register next timer
        // 调用用户传入的方法获取当前watermark
        Watermark newWatermark = userFunction.getCurrentWatermark();
        if (newWatermark != null && newWatermark.getTimestamp() > currentWatermark) {
            currentWatermark = newWatermark.getTimestamp();
            // emit watermark
            output.emitWatermark(newWatermark);
        }
        // 再次schedule一个processing time定时任务
        long now = getProcessingTimeService().getCurrentProcessingTime();
        getProcessingTimeService().registerTimer(now + watermarkInterval, this);
    }

    /**
     * Override the base implementation to completely ignore watermarks propagated from
     * upstream (we rely only on the {@link AssignerWithPeriodicWatermarks} to emit
     * watermarks from here).
     */
    // 忽略上游的所有watermark
    // 有一个例外就是上接收到timestamp为Long.MAX_VALUE的watermark
    // 此时意味着输入流已经结束,需要将这个watermark发往下游
    @Override
    public void processWatermark(Watermark mark) throws Exception {
        // if we receive a Long.MAX_VALUE watermark we forward it since it is used
        // to signal the end of input and to not block watermark progress downstream
        if (mark.getTimestamp() == Long.MAX_VALUE && currentWatermark != Long.MAX_VALUE) {
            currentWatermark = Long.MAX_VALUE;
            output.emitWatermark(mark);
        }
    }

    @Override
    public void close() throws Exception {
        super.close();

        // emit a final watermark
        // operator关闭的时候再次出发一次watermark发送操作
        Watermark newWatermark = userFunction.getCurrentWatermark();
        if (newWatermark != null && newWatermark.getTimestamp() > currentWatermark) {
            currentWatermark = newWatermark.getTimestamp();
            // emit watermark
            output.emitWatermark(newWatermark);
        }
    }
}

TimestampsAndPunctuatedWatermarksOperator

该类的源码分析如下:

public class TimestampsAndPunctuatedWatermarksOperator<T>
        extends AbstractUdfStreamOperator<T, AssignerWithPunctuatedWatermarks<T>>
        implements OneInputStreamOperator<T, T> {

    private static final long serialVersionUID = 1L;

    private long currentWatermark = Long.MIN_VALUE;

    public TimestampsAndPunctuatedWatermarksOperator(AssignerWithPunctuatedWatermarks<T> assigner) {
        super(assigner);
        this.chainingStrategy = ChainingStrategy.ALWAYS;
    }

    @Override
    public void processElement(StreamRecord<T> element) throws Exception {
        final T value = element.getValue();
                // 调用用户方法获取timestamp
        final long newTimestamp = userFunction.extractTimestamp(value,
                element.hasTimestamp() ? element.getTimestamp() : Long.MIN_VALUE);
                // 收集元素
        output.collect(element.replace(element.getValue(), newTimestamp));

                // 调用用户方法获取watermark,发送给下游
        final Watermark nextWatermark = userFunction.checkAndGetNextWatermark(value, newTimestamp);
        if (nextWatermark != null && nextWatermark.getTimestamp() > currentWatermark) {
            currentWatermark = nextWatermark.getTimestamp();
            output.emitWatermark(nextWatermark);
        }
    }

    /**
     * Override the base implementation to completely ignore watermarks propagated from
     * upstream (we rely only on the {@link AssignerWithPunctuatedWatermarks} to emit
     * watermarks from here).
     */
        // 和TimestampsAndPeriodicWatermarksOperator的方法一样,不再赘述
    @Override
    public void processWatermark(Watermark mark) throws Exception {
        // if we receive a Long.MAX_VALUE watermark we forward it since it is used
        // to signal the end of input and to not block watermark progress downstream
        if (mark.getTimestamp() == Long.MAX_VALUE && currentWatermark != Long.MAX_VALUE) {
            currentWatermark = Long.MAX_VALUE;
            output.emitWatermark(mark);
        }
    }
}

经过分析可知这两个operator最大的区别是TimestampsAndPeriodicWatermarksOperator会周期性的发送watermark,即便没有数据,仍会周期性发送timestamp相同的watermark,而TimestampsAndPunctuatedWatermarksOperator不会周期性发送watermark,只在每次元素到来的时候才发送watermark。

8.AscendingTimestampExtractor

这个timestamp提取器适用于顺序到来元素携带的timestamp严格递增的场景。

以下是extractTimestamp方法的源代码。该方法多了一个判断逻辑。如果新元素提取出的timestamp比currentTimestamp小的话,说明timestamp没有严格递增。接下来violationHandler的handleViolation会被调用。handleViolation是timestamp没有严格递增时候的回调函数。用户可以自己实现回调函数,也可以使用系统实现好的两个回调,分别是:

  • IgnoringHandler:忽略没有严格递增的情况,不作任何处理。
  • FailingHandler:抛出RuntimeException。
  • LoggingHandler:使用日志记录。
@Override
public final long extractTimestamp(T element, long elementPrevTimestamp) {
    final long newTimestamp = extractAscendingTimestamp(element);
    if (newTimestamp >= this.currentTimestamp) {
        this.currentTimestamp = newTimestamp;
        return newTimestamp;
    } else {
        violationHandler.handleViolation(newTimestamp, this.currentTimestamp);
        return newTimestamp;
    }
}

BoundedOutOfOrdernessTimestampExtractor

watermark最常用的场景就是允许一定程度的数据乱序(有一个来迟数据的最大允许容忍时间,超过这个时间的数据不会被计算,由旁路输出处理)。Flink根据这种场景为我们实现好了一个timestamp提取器。该提取器中有一个重要变量maxOutOfOrderness,含义为上句话括号中所述的数据来迟最大容忍时间。该提取器是一个抽象类,使用时需要用户继承此类,实现extractTimestamp(T element)方法,编写根据元素来获取timestamp的逻辑。

该提取器的extractTimestamp(T element, long previousElementTimestamp)方法和分析如下所示:

@Override
public final long extractTimestamp(T element, long previousElementTimestamp) {
    // 调用用户实现的方法,从元素获取timestamp
    long timestamp = extractTimestamp(element);
    // currentMaxTimestamp存储了已处理数据最大的timestamp
    // 初始值为Long.MIN_VALUE + maxOutOfOrderness
    if (timestamp > currentMaxTimestamp) {
        currentMaxTimestamp = timestamp;
    }
    return timestamp;
}

此方法由之前所讲的两个operator调用。用户不需要考虑如何实现这个方法,只需要实现该方法间接调用的extractTimestamp(T element)方法即可。

getCurrentWatermark获取当前watermark方法代码如下:

@Override
public final Watermark getCurrentWatermark() {
    // this guarantees that the watermark never goes backwards.
    // 主要逻辑在此,发送watermark的时间为减去maxOutOfOrderness
    // 含义为maxOutOfOrderness时间之前的数据已经到齐
    // 这样保证了只有maxOutOfOrderness时间之前的数据才进行计算
    long potentialWM = currentMaxTimestamp - maxOutOfOrderness;
    // 此处防止watermark倒流
    if (potentialWM >= lastEmittedWatermark) {
        lastEmittedWatermark = potentialWM;
    }
    return new Watermark(lastEmittedWatermark);
}

IngestionTimeExtractor

和AutomaticWatermarkContext生成watermark的逻辑基本一致,只是没有watermark对齐操作。使用系统当前时间作为watermark的timestamp发往下游。

public class IngestionTimeExtractor<T> implements AssignerWithPeriodicWatermarks<T> {
    private static final long serialVersionUID = -4072216356049069301L;

    private long maxTimestamp;

    @Override
    public long extractTimestamp(T element, long previousElementTimestamp) {
        // make sure timestamps are monotonously increasing, even when the system clock re-syncs
        final long now = Math.max(System.currentTimeMillis(), maxTimestamp);
        maxTimestamp = now;
        return now;
    }

    @Override
    public Watermark getCurrentWatermark() {
        // make sure timestamps are monotonously increasing, even when the system clock re-syncs
        final long now = Math.max(System.currentTimeMillis(), maxTimestamp);
        maxTimestamp = now;
        return new Watermark(now - 1);
    }
}

标签:watermark,处理,timestamp,Flink,long,源码,timer,Override,public
来源: https://blog.csdn.net/qq_21383435/article/details/122519559

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有