ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

ReentrantLock源码

2021-09-24 19:04:36  阅读:124  来源: 互联网

标签:node Node return pred ReentrantLock 源码 null final


结构

类图

 

构造方法

//java.util.concurrent.locks.ReentrantLock


//默认非公平锁
public ReentrantLock() {
        sync = new NonfairSync();
    }

   
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

//执行lock实际上是执行sync的lock方法
public void lock() {
        sync.lock();
    }


加锁

先上流程图

 

我们先看非公平锁的加锁过程

//java.util.concurrent.locks.ReentrantLock

NonfairSync内部类

 final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
compareAndSetState方法写在AQS里面
//java.util.concurrent.locks.AbstractQueuedSynchronizer

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {

/**
     * 同步状态,初始化后为0
     */
    private volatile int state;


private transient volatile Node head;

private transient volatile Node tail;

//unsafe在这获取
private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;
//静态代码块获取偏移量
    static {
        try {
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

        } catch (Exception ex) { throw new Error(ex); }
    }


//第一次是0,所以成功设置为1,代表已经获取到锁了
protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

第一次返回true,继续执行setExclusiveOwnerThread

//java.util.concurrent.locks.AbstractOwnableSynchronizer

private transient Thread exclusiveOwnerThread;

//设置独占线程
protected final void setExclusiveOwnerThread(Thread thread) {
        exclusiveOwnerThread = thread;
    }

第一次lock代码很简单,再看第二次lock,此时compareAndSetState返回false,所以走acquire(1);

//java.util.concurrent.locks.AbstractQueuedSynchronizer


public final void acquire(int arg) {
        //子类实现的,返回false则继续执行
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

调用tryAcquire

//java.util.concurrent.locks.ReentrantLock


//NonfairSync内部类
protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }



final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            //锁已经被释放,重设锁
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //获取锁的线程和当前线程是同一个,这是重入锁关键
            else if (current == getExclusiveOwnerThread()) {
                //锁status计数器加一
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            //走到这说明需要等待锁,返回false继续往下走
            return false;
        }

继续看acquireQueued

//java.util.concurrent.locks.AbstractQueuedSynchronizer


//Node是一个内部类
static final class Node {

    
    static final Node EXCLUSIVE = null;

}

Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        //插入队列
        enq(node);
        return node;
    }

private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }


/**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // 第一次tail是null,CAS设置为头
                if (compareAndSetHead(new Node()))
                    tail = head;//tail和head都设置为上面new Node,之后重新走第二次循环
            } else {
                //然后把当前node插入队尾
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

接下来看acquireQueued

//java.util.concurrent.locks.AbstractQueuedSynchronizer


final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                //第一次执行到这,这里的p就是之前设置的head,所以条件p == head成立
                //再次执行tryAcquire假设还锁没有释放,则返回false
                if (p == head && tryAcquire(arg)) {
                    ...
                }
                if (shouldParkAfterFailedAcquire(p, node) &&//第二次返回true,继续执行parkAndCheckInterrupt()方法
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }


Node内部方法

final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }


private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;//第一次执行为Node默认waitStatus为0
        if (ws == Node.SIGNAL)//第二次直接返回true
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            //CAS设pred为SIGNAL状态
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

//这部分代码比较简单,只是挂起线程
private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

Node结构图

 

 

 

 

释放锁

 

lock过程基本分析完成,接下来看unlock

//java.util.concurrent.locks.ReentrantLock


public void unlock() {
        sync.release(1);
    }



//java.util.concurrent.locks.AbstractQueuedSynchronizer
public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            //如果之前等待队列生成了head,则会执行unparkSuccessor
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }


//java.util.concurrent.locks.ReentrantLock
Sync 内部类
protected final boolean tryRelease(int releases) {
            int c = getState() - releases;

            //没有拥有锁的线程调用会直接崩溃
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            //c==0说明线程已经释放了锁,可以被其他线程获取了
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }



//java.util.concurrent.locks.AbstractQueuedSynchronizer
private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        //获取head的next,然后判空,此处先忽略为null或者waitStatus > 0情况
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)//重新唤醒线程
            LockSupport.unpark(s.thread);
    }

在这唤醒后,会返回之前挂起的地方,我们回过头看之前的代码

//返回线程的中断状态
private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }


final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                //如果当前Node的上一节点是head,则重设head
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //如果这里是true则设置interrupted状态,然后返回for循环
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

//然后返回这
public final void acquire(int arg) {
        //如果状态状态是true则执行selfInterrupt
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

//尝试把自己中断
static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

另一个之前没解决的问题是head的next节点什么情况waitStatus > 0,CANCELLED = 1,所以证明中间节点被cancel的时候则状态变了。一般来说failed只有发生异常等情况会为true,但是有一种情况例外,我们来看下。

private void doAcquireInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    //在这直接抛异常,不再执行for,也就是failed依然是true,然后执行finally
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

看cancelAcquire方法

private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;

        node.thread = null;

        // Skip cancelled predecessors
        Node pred = node.prev;
        while (pred.waitStatus > 0)//往前遍历找到之前一个没被cancel的节点
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        node.waitStatus = Node.CANCELLED;

        // If we are the tail, remove ourselves.
        //如果现在已经是队尾,则移除自己,成功则设置后继节点为null
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            //
            int ws;
            if (//此处判断较多拆开分析
                //当前节点的前驱节点不是head
                pred != head &&
                //前驱节点的状态是SIGNAL
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                //否则尝试设置前驱的status为SIGNAL
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                //上面两个满足其中一个,判断前驱thread是否为null
                pred.thread != null) {
                //设置前驱节点的next节点为当前Node的next节点,等于删除了当前Node
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                //假设前驱thread为null,也就是当前前驱为head,则唤醒当前Node的后继节点线程
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

回到之前的问题:

为什么在unparkSuccessor的时候,如果node.next==null或者waitStatus > 0寻找节点从后往前?代码如下:



Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }


//我们模拟多线程的一些特殊情况
private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {

                //假设执行到这里被挂起
                //tail已经为最新的node,但是从前往后遍历找不到tail
                pred.next = node;
                return node;
            }
        }
        //插入队列
        enq(node);
        return node;
    }

公平锁

(未完待续)

标签:node,Node,return,pred,ReentrantLock,源码,null,final
来源: https://blog.csdn.net/caoxiao90/article/details/120367762

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有