ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

【雷达通信】基于matlab联邦滤波算法惯性+GPS+地磁组合导航仿真【含Matlab源码 1276期】

2021-09-02 16:35:31  阅读:145  来源: 互联网

标签:cos cbn 1276 sin fai matlab vx pi 源码


一、联邦滤波算法简介

面对未来大规模无人机集群任务,若采用集中式的信息融合,计算和通信负担重,并且容错性差。而联邦滤波算法作为一种新型的分散化滤波方法,降低了算法的复杂性,提高了算法的容错性与可靠性,而且联邦滤波算法易于实现,信息分配方式灵活,计算量小。
联邦滤波器中,主滤波器与各子滤波器的状态方程相同,如式所示。假设对式进行n次独立的测量,相应的量测方程如式所示。设Xˆg(k|k)和Pg(k|k)为联邦滤波器的最优估计和协方差阵,Xˆi(k|k)和Pi(k|k)为第i个子滤波器的估计值与协方差阵(i=1,2,⋯,n),Xˆm(k|k)和Pm(k|k)为主滤波器的估计值和协方差阵。联邦滤波器的一般结构如图所示。
在这里插入图片描述
图 联邦滤波结构框架
联邦滤波器的工作流程分为4个步骤。
步骤1信息分配。系统的信息Q−1(k)和P−1g(k|k)在子滤波器与主滤波器的信息分配原则为
在这里插入图片描述
步骤2时间更新。子滤波器与主滤波器的时间更新相互独立,其中i=1,2,⋯,n,m,则时间更新方程为
在这里插入图片描述
步骤3量测更新。量测更新只在子滤波器中进行,即i=1,2,⋯,n,则量测更新方程为
在这里插入图片描述
在这里插入图片描述
步骤4信息融合。将各个局部滤波器的局部估计值进行融合,得到全局最优估计,即
在这里插入图片描述

二、部分源代码

% GPS/INS/地磁组合导航,采用联邦滤波算法

clear
R=6378137;
omega=7292115.1467e-11;
g=9.78;
T=14.4;
time=3750;
yinzi1=0.5;
yinzi2=0.5;

%initial value
fai0=30*pi/180;
lamda0=30*pi/180;
vxe0=0.01;
vye0=0.01;

faie0=2.0/60*pi/180;
lamdae0=2.0/60*pi/180;
afae0=3.0/60*pi/180;
beitae0=3.0/60*pi/180;
gamae0=5.0/60*pi/180;

hxjz=pi/4;
vx=20*1852/3600*sin(hxjz);
vy=20*1852/3600*cos(hxjz);
%
weichagps=25;%GPS位置误差
suchagps=0.05;%GPS速度误差
gyroe0=(0.01/3600)*pi/180;
gyrotime=1/7200;%陀螺漂移反向相关时间
atime=1/1800;
gyronoise=(0.001/3600)/180*pi;%陀螺漂移白噪声
beta_d=1/6000.0;     %速度偏移误差反向相关时间
beta_drta=1/6000.0;  %偏流角误差反向相关时间

%matrix of system equation

fai=fai0;
lamada=lamda0;

zong=0*pi/180;
heng=0*pi/180;
hang=45*pi/180;


F(16,16)=0;
G(16,9)=0;




%initial value
x1(16,1)=0;

%the error of sins

xx=x1;

xx(1)=faie0;  %ljn
xx(2)=lamdae0;

xx(5)=afae0;
xx(6)=beitae0;
xx(7)=gamae0;
xx(8)=(0.01/3600)*pi/180;
xx(9)=(0.01/3600)*pi/180;
xx(10)=(0.01/3600)*pi/180;
xx(11)=0.0005;
xx(12)=0.0005;
xx(13)=0.0005;


%w=[gyronoise,gyronoise,gyronoise,gyronoise,gyronoise,gyronoise,g*1e-5,g*1e-5]';
g1=randn(1,time);
g2=randn(1,time);
g3=randn(1,time);
g4=randn(1,time);
g5=randn(1,time);
g6=randn(1,time);
g7=randn(1,time);
g8=randn(1,time);
g9=randn(1,time);


% attitude change matrix

cbn(1,1)=cos(zong)*cos(hang)+sin(zong)*sin(heng)*sin(hang);
cbn(1,2)=-cos(zong)*sin(hang)+sin(zong)*sin(heng)*cos(hang);
cbn(1,3)=-sin(zong)*cos(heng);
cbn(2,1)= cos(heng)*sin(hang);
cbn(2,2)=cos(heng)*cos(hang);
cbn(2,3)=sin(heng);
cbn(3,1)= sin(zong)*cos(hang)-cos(zong)*sin(heng)*sin(hang);
cbn(3,2)=-sin(zong)*sin(hang)-cos(zong)*sin(heng)*cos(hang);
cbn(3,3)=cos(zong)*cos(heng);

F(1,4)=1/R;
F(2,3)=1/(R*cos(fai));
%F(3,1)=2*omega*vx*cos(fai)+vx*vy*sec(fai)^2/R;
F(3,1)=2*omega*vy*cos(fai)+vx*vy*sec(fai)^2/R;
%F(3,3)=vx*tan(fai)/R;
F(3,3)=vy*tan(fai)/R;
F(3,4)=vx*tan(fai)/R+2*omega*sin(fai);
F(3,6)=-g;
%F(4,1)=-(2*omega*vx*cos(fai)+vx^2*sec(fai)^2/R);
F(4,1)=-(2*omega*vx*sin(fai)+vx^2*sec(fai)^2/R);
F(4,3)=-2*(vx*tan(fai)/R+omega*sin(fai));
F(4,5)=g;
%F(4,7)=-g;
F(5,4)=-1/R;
F(5,6)=omega*sin(fai)+vx*tan(fai)/R;
F(5,7)=-(omega*cos(fai)+vx/R);
F(5,8)=1;
F(6,1)=-omega*sin(fai);
%F(6,3)=-1/R;
F(6,3)=1/R;
F(6,5)=-(omega*sin(fai)+vx*tan(fai)/R);
%F(6,7)=-vx/R;
F(6,7)=-vy/R;
F(6,9)=1;
F(7,1)=omega*cos(fai)+vx*sec(fai)^2/R;
F(7,3)=tan(fai)/R;
F(7,5)=omega*cos(fai)+vx/R;
%F(7,6)=vx/R;
F(7,6)=vy/R;
F(7,10)=1;
F(8,8)=-gyrotime;
F(9,9)=-gyrotime;
F(10,10)=-gyrotime;

F(3,11)=cbn(1,1);
F(3,12)=cbn(1,2);
F(3,13)=cbn(1,3);

F(4,11)=cbn(2,1);
F(4,12)=cbn(2,2);
F(4,13)=cbn(2,3);

F(5,8)=cbn(1,1);
F(5,9)=cbn(1,2);
F(5,10)=cbn(1,3);

F(6,8)=cbn(2,1);
F(6,9)=cbn(2,2);
F(6,10)=cbn(2,3);

F(7,8)=cbn(3,1);
F(7,9)=cbn(3,2);
F(7,10)=cbn(3,3);

F(11,11)=-atime;
F
F(16,16)=0;


G=[0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0;
    1,0,0,0,0,0,0,0,0;
    0,1,0,0,0,0,0,0,0;
    0,0,1,0,0,0,0,0,0;
    0,0,0,1,0,0,0,0,0;
    0,0,0,0,1,0,0,0,0;
    0,0,0,0,0,1,0,0,0;
    0,0,0,0,0,0,1,0,0;
    0,0,0,0,0,0,0,1,0;
    0,0,0,0,0,0,0,0,1];

[A,B]=c2d(F,G,T);

for i=1:time
    w(1,1)=gyronoise*g1(1,i);
    w(2,1)=gyronoise*g2(1,i);
    w(3,1)=gyronoise*g3(1,i);
    w(4,1)=(0.5*g*1e-5)*g4(1,i);
    w(5,1)=(0.5*g*1e-5)*g5(1,i);
    w(6,1)=(0.5*g*1e-5)*g6(1,i);
    w(7,1)=0.005*g7(1,i);
    w(8,1)=1/600*pi/180*g8(1,i);
    w(9,1)=0.0001*g9(1,i);
    xx=A*xx+B*w/T^2;
    
    
    sins1(1,i)=xx(1,1);
    sins1(2,i)=xx(2,1);
    sins1(3,i)=xx(3,1);
    sins1(4,i)=xx(4,1);
    sins1(5,i)=xx(5,1);
    sins1(6,i)=xx(6,1);
    sins1(7,i)=xx(7,1);
    
    s1(i)=xx(1,1)/pi*180*60;




fai0=30*pi/180;
lamda0=30*pi/180;
vxe0=0.01;
vye0=0.01;

faie0=2*pi/(180*60);
lamdae0=2*pi/(180*60);
afae0=3*pi/(180*60);
beitae0=3*pi/(180*60);
gamae0=5*pi/(180*60);

hxjz=pi/4;
vx=20*1842/3600*sin(hxjz);
vy=20*1842/3600*cos(hxjz);
%vx=0;
%vy=0;
fe=0;
fn=0;
fu=g;

% attitude change matrix
zong=0*pi/180;
heng=0*pi/180;
hang=45*pi/180;
cbn(1,1)=cos(zong)*cos(hang)+sin(zong)*sin(heng)*sin(hang);
cbn(1,2)=-cos(zong)*sin(hang)+sin(zong)*sin(heng)*cos(hang);
cbn(1,3)=-sin(zong)*cos(heng);
cbn(2,1)= cos(heng)*sin(hang);
cbn(2,2)=cos(heng)*cos(hang);
cbn(2,3)=sin(heng);
cbn(3,1)= sin(zong)*cos(hang)-cos(zong)*sin(heng)*sin(hang);
cbn(3,2)=-sin(zong)*sin(hang)-cos(zong)*sin(heng)*cos(hang);
cbn(3,3)=cos(zong)*cos(heng);
%
gpstime=1/600;
weichagps=25;%GPS位置误差
suchagps=0.05;%GPS速度误差
gyroe0=(0.01/3600)*pi/180;
gyrotime=1/7200;%陀螺漂移反向相关时间
atime=1/1800;
gyronoise=(0.01/3600)/180*pi;%陀螺漂移白噪声


tcm2time=1/300;
tcm2noise=0.04*pi/(60*180);
afatcm2=6*pi/(180*60);
betatcm2=6*pi/(180*60);
gamatcm2=6*pi/(180*60);

%matrix of system equation

fai=fai0;
lamada=lamda0;
F(22,22)=0;
F(1,4)=1/R;

F(2,1)=vx*tan(fai)*sec(fai)/R;
F(2,3)=sec(fai)/R;

F(3,1)=2*omega*vx*cos(fai)+vx*vy*sec(fai)^2/R;
F(3,3)=vx*tan(fai)/R;
F(3,4)=vx*tan(fai)/R+2*omega*sin(fai);
F(3,6)=-fu;
F(3,7)=fn;

F(4,1)=-(2*omega*vx*cos(fai)+vx^2*sec(fai)^2/R);
F(4,3)=-2*(vx*tan(fai)/R+omega*sin(fai));
F(4,5)=fu;
F(4,7)=-fe;

F(5,4)=-1/R;
F(5,6)=omega*sin(fai)+vx*tan(fai)/R;
F(5,7)=-(omega*cos(fai)+vx/R);
%F(5,8)=1;
F(6,1)=-omega*sin(fai);
F(6,3)=1/R;
F(6,5)=-(omega*sin(fai)+vx*tan(fai)/R);
F(6,7)=-vx/R;
%F(6,9)=1;
F(7,1)=omega*cos(fai)+vx*sec(fai)^2/R;
F(7,3)=tan(fai)/R;
F(7,5)=omega*cos(fai)+vx/R;
F(7,6)=vx/R;
%F(7,10)=1;
F(5,8)=cbn(1,1);
F(5,9)=cbn(1,2);
F(5,10)=cbn(1,3);
F(5,11)=cbn(1,1);
F(5,12)=cbn(1,2);


Q=[2*gyronoise^2/7200,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
    0,2*gyronoise^2/7200,0,0,0,0,0,0,0,0,0,0,0,0,0;
    0,0,2*gyronoise^2/7200,0,0,0,0,0,0,0,0,0,0,0,0;
    0,0,0,gyronoise^2,0,0,0,0,0,0,0,0,0,0,0;
    0,0,0,0,gyronoise^2,0,0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,gyronoise^2,0,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,2*5*g*1e-5/1800,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,2*5*g*1e-5/1800,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,2*(25/R)^2/600,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0,2*(25/R)^2/600,0,0,0,0,0;
    0,0,0,0,0,0,0,0,0,0,2*0.05^2/600,0,0,0,0;
    0,0,0,0,0,0,0,0,0,0,0,2*0.05^2/600,0,0,0;
    0,0,0,0,0,0,0,0,0,0,0,0,2*tcm2noise^2/300,0,0;
    0,0,0,0,0,0,0,0,0,0,0,0,0,2*tcm2noise^2/300,0;
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*tcm2noise^2/300];
Q1=1/yinzi1*Q;
Q2=1/yinzi2*Q;

r=[(weichagps/R)^2,0,0,0,0,0,0;
    0,(weichagps/R)^2,0,0,0,0,0;
    0 , 0,suchagps^2,0,0,0,0;
    0, 0, 0, suchagps^2,0,0,0;
    0,0,0,0,tcm2noise^2,0,0;
    0,0,0,0,0,tcm2noise^2,0;
    0,0,0,0,0,0,tcm2noise^2];
r1=[(weichagps/R)^2,0,0,0;
    0,(weichagps/R)^2,0,0;
    0 , 0,suchagps^2,0;
    0, 0, 0, suchagps^2];
r2=[tcm2noise^2,0,0;
    0,tcm2noise^2,0;
    0,0,tcm2noise^2];


%discrete manage
[A,B]=c2d(F,G,T);
r1=r1/T;
r2=r2/T;
Q1=Q1/T;
Q2=Q2/T;



%initial value
p=[faie0^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;


figure(1);
subplot(3,2,1)
plot(t,sg1,'b:')
grid
xlabel('time(h)')
ylabel('纬度误差估计(角分)')
subplot(3,2,2)
plot(t,ss1,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(角分)')
subplot(3,2,3)
plot(t,sg2 ,'b:')
grid
xlabel('time(h)')
ylabel('经度误差估计(角分)')
subplot(3,2,4)
plot(t,ss2 ,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(角分)')
set(gcf,'color',[1 1 1])


figure(2);
subplot(3,2,1)
plot(t,sg3,'b:')
grid
xlabel('time(h)')
ylabel('东向速度误差估计(kn)')
subplot(3,2,2)
plot(t,ss3,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(kn)')

subplot(3,2,3)
plot(t,sg4 ,'b:')
grid
xlabel('time(h)')
ylabel('北向速度误差估计(kn)')
subplot(3,2,4)
plot(t,ss4 ,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(kn)')
set(gcf,'color',[1 1 1])

figure(3);
subplot(3,2,1)
plot(t,sg5,'b:')
grid
xlabel('time(h)')
ylabel('纵摇角误差估计(角分)')
subplot(3,2,2)
plot(t,ss5,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(角分)')

subplot(3,2,3)
plot(t,sg6 ,'b:')
grid
xlabel('time(h)')
ylabel('横摇角误差估计(角分)')
subplot(3,2,4)
plot(t,ss6 ,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(角分)')

subplot(3,2,5)
plot(t,sg7 ,'b:')
grid
xlabel('time(h)')
ylabel('首向角误差估计(角分)')
subplot(3,2,6)
plot(t,ss7 ,'b:')
grid
xlabel('time(h)')
ylabel('误差的残差曲线(角分)')
set(gcf,'color',[1 1 1])

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.
[4]李树锋.基于完全互补序列的MIMO雷达与5G MIMO通信[M].清华大学出版社.2021
[5]何友,关键.雷达目标检测与恒虚警处理(第二版)[M].清华大学出版社.2011

标签:cos,cbn,1276,sin,fai,matlab,vx,pi,源码
来源: https://www.cnblogs.com/QQ912100926/p/15219326.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有