ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

【BP预测】基于花授粉算法改进BP神经网络实现数据预测

2021-07-25 18:02:03  阅读:187  来源: 互联网

标签:预测 mem 神经网络 算法 授粉 BP output


一、 BP神经网络预测算法简介

说明:1.1节主要是概括和帮助理解考虑影响因素的BP神经网络算法原理,即常规的BP模型训练原理讲解(可根据自身掌握的知识是否跳过)。1.2节开始讲基于历史值影响的BP神经网络预测模型。

使用BP神经网络进行预测时,从考虑的输入指标角度,主要有两类模型:

1.1 受相关指标影响的BP神经网络算法原理

如图一所示,使用MATLAB的newff函数训练BP时,可以看到大部分情况是三层的神经网络(即输入层,隐含层,输出层)。这里帮助理解下神经网络原理:
1)输入层:相当于人的五官,五官获取外部信息,对应神经网络模型input端口接收输入数据的过程。
2)隐含层:对应人的大脑,大脑对五官传递来的数据进行分析和思考,神经网络的隐含层hidden Layer对输入层传来的数据x进行映射,简单理解为一个公式hiddenLayer_output=F(w*x+b)。其中,w、b叫做权重、阈值参数,F()为映射规则,也叫激活函数,hiddenLayer_output是隐含层对于传来的数据映射的输出值。换句话说,隐含层对于输入的影响因素数据x进行了映射,产生了映射值。
3)输出层:可以对应为人的四肢,大脑对五官传来的信息经过思考(隐含层映射)之后,再控制四肢执行动作(向外部作出响应)。类似地,BP神经网络的输出层对hiddenLayer_output再次进行映射,outputLayer_output=w *hiddenLayer_output+b。其中,w、b为权重、阈值参数,outputLayer_output是神经网络输出层的输出值(也叫仿真值、预测值)(理解为,人脑对外的执行动作,比如婴儿拍打桌子)。
4)梯度下降算法:通过计算outputLayer_output和神经网络模型传入的y值之间的偏差,使用算法来相应调整权重和阈值等参数。这个过程,可以理解为婴儿拍打桌子,打偏了,根据偏离的距离远近,来调整身体使得再次挥动的胳膊不断靠近桌子,最终打中。

再举个例子来加深理解:

图一所示BP神经网络,具备输入层、隐含层和输出层。BP是如何通过这三层结构来实现输出层的输出值outputLayer_output,不断逼近给定的y值,从而训练得到一个精准的模型的呢?

从图中串起来的端口,可以想到一个过程:坐地铁,将图一想象为一条地铁线路。王某某坐地铁回家的一天:在input起点站上车,中途经过了很多站(hiddenLayer),然后发现坐过头了(outputLayer对应现在的位置),那么王某某将会根据现在的位置离家(目标Target)的距离(误差Error),返回到中途的地铁站(hiddenLayer)重新坐地铁(误差反向传递,使用梯度下降算法更新w和b),如果王某某又一次发生失误,那么将再次进行这个调整的过程。

从在婴儿拍打桌子和王某某坐地铁的例子中,思考问题:BP的完整训练,需要先传入数据给input,再经过隐含层的映射,输出层得到BP仿真值,根据仿真值与目标值的误差,来调整参数,使得仿真值不断逼近目标值。比如(1)婴儿受到了外界的干扰因素(x),从而作出反应拍桌(predict),大脑不断的调整胳膊位置,控制四肢拍准(y、Target)。(2)王某某上车点(x),过站点(predict),不断返回中途站来调整位置,到家(y、Target)。

在这些环节中,涉及了影响因素数据x,目标值数据y(Target)。根据x,y,使用BP算法来寻求x与y之间存在的规律,实现由x来映射逼近y,这就是BP神经网络算法的作用。再多说一句,上述讲的过程,都是BP模型训练,那么最终得到的模型虽然训练准确,但是找到的规律(bp network)是否准确与可靠呢。于是,我们再给x1到训练好的bp network中,得到相应的BP输出值(预测值)predict1,通过作图,计算Mse,Mape,R方等指标,来对比predict1和y1的接近程度,就可以知道模型是否预测准确。这是BP模型的测试过程,即实现对数据的预测,并且对比实际值检验预测是否准确。
在这里插入图片描述
图一 3层BP神经网络结构图

1.2 基于历史值影响的BP神经网络

以电力负荷预测问题为例,进行两种模型的区分。在预测某个时间段内的电力负荷时:

一种做法,是考虑 t 时刻的气候因素指标,比如该时刻的空气湿度x1,温度x2,以及节假日x3等的影响,对 t 时刻的负荷值进行预测。这是前面1.1所说的模型。

另一种做法,是认为电力负荷值的变化,与时间相关,比如认为t-1,t-2,t-3时刻的电力负荷值与t时刻的负荷值有关系,即满足公式y(t)=F(y(t-1),y(t-2),y(t-3))。采用BP神经网络进行训练模型时,则输入到神经网络的影响因素值为历史负荷值y(t-1),y(t-2),y(t-3),特别地,3叫做自回归阶数或者延迟。给到神经网络中的目标输出值为y(t)。

二、花授粉算法

花朵授粉算法( Flower Pollination Algorithm,FPA)是由英国剑桥大学学者Yang于2012年提出的,其基本思想来源于对自然界花朵自花授粉、异花授粉的模拟,是一种新的元启发式群智能随机优化技术 。算法中为了简便计算,假设每个植物仅有一朵花,每朵花只有一个配子,我们可以认为每一个配子都是解空间中的一个候选解。

Yang通过对花朵授粉的研究,抽象出以下四大规则:

1) 生物异花授粉被考虑为算法的全局探测行为,并由传粉者通过Levy飞行的机制实现全局授粉;

2)非生物自花授粉被视作算法的局部开采行为,或称局部授粉;

3)花朵的常性可以被认为是繁衍概率,他与两朵参与授粉花朵的相似性成正比例关系;

4)花朵的全局授粉与局部授粉通过转换概率 p∈[0,1]进行调节。 由于物理上的邻近性和风等因素的影响,在整个授粉活动中,转换概率 p是一个非常重要的参数。 文献[1]中对该参数的试验研究认为,取 p =0.8 更利于算法寻优。

 

直接上步骤(以多元函数寻优为例):

目标函数 : min g = f(x1,x2,x3,x4...........xd)

设置参量:N(候选解的个数),iter(最大迭代次数),p(转换概率),lamda(Levy飞行参数)

初始化花朵,随机设置一个NXd的矩阵;

计算适应度,即函数值;

获取最优解和最优解得位置;

A循环 1 : 1 :iter

B循环

if rand < p

全局授粉;

else

局部授粉;

end if

更新新一代的花朵与适应度(函数变量和函数值);

B循环end

获取新一代的最优解与最优解位置;

A循环end

 

全局更新公式:xi(t+1) = xi(t) + L(xi(t) - xbest(t)) L服从Levy分布,具体可以搜索布谷鸟算法。

局部更新公式:xi(t+1) = xi(t) + m(xj(t) - xk(t)) m是服从在[0,1]上均匀分布的随机数。其中,xj和xk是两个不同的个体

​三、代码

function [mem,bestSol,bestFit,optima,FunctionCalls]=FPA(para)
% Default parameters
if nargin<1,
   para=[50 0.25 500];   
end

n=para(1);           % Population size
p=para(2);           % Probabibility switch
N_iter=para (3);  % Number of iterations

phase = 1; %First state
phaseIte= [0.5,0.9,1.01]; %State vector

%Deb Function
d = 1;
Lb = 0;
Ub = 1;
optima =  [.1;.3;.5;.7;.9];


% Initialize the population
for i=1:n,
  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
  Fitness(i)=fitFunc(Sol(i,:));  %%Evaluate fitness function
end

% Initialice the memory
[mem,bestSol,bestFit,worstF] = memUpdate(Sol,Fitness, [], zeros(1,d), 100000000, 0, phase,d,Ub,Lb);

S = Sol;

FunctionCalls = 0;
% Main Loop
for ite = 1 : N_iter,
                    %For each pollen gamete, modify each position acoording
                    %to local or global pollination
                    for i = 1 : n,
                                % Switch probability
                                if rand>p,
                                            
                                            L=Levy(d);
                                            dS=L.*(Sol(i,:)-bestSol);
                                            S(i,:)=Sol(i,:)+dS;
                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);
                                else
                                            epsilon=rand;
                                            % Find random flowers in the neighbourhood
                                            JK=randperm(n);
                                            % As they are random, the first two entries also random
                                            % If the flower are the same or similar species, then
                                            % they can be pollenated, otherwise, no action.
                                            % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)
                                            S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));
                                            % Check if the simple limits/bounds are OK
                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);
                                end
                                Fitness(i)=fitFunc(S(i,:));
                    end
                    %Update the memory
                    [mem,bestSol,bestFit,worstF] = memUpdate(S,Fitness,mem,bestSol,bestFit,worstF,phase,d,Ub,Lb);
                    
                   Sol = get_best_nest(S, mem, p);
                   
                   FunctionCalls = FunctionCalls + n;
                
                   if ite/N_iter > phaseIte(phase)
                        %Next evolutionary process stage
                        phase = phase + 1;
                        [m,~]=size(mem);
                        %Depurate the memory for each stage
                        mem = cleanMemory(mem);
                        FunctionCalls = FunctionCalls + m;
                   end
end

%Plot the solutions (mem) founded by the multimodal framework
x = 0:.01:1;
y = ((sin(5.*pi.*x)).^ 6);
plot(x,y)
hold on
plot(mem(:,1),-mem(:,2),'r*');

 

四、仿真结果

在这里插入图片描述

图2花朵授粉算法收敛曲线

测试统计如下表所示

测试结果测试集正确率训练集正确率
BP神经网络 100% 95%
FPA-BP 100% 99.8%

 

五、参考文献及代码私信博主

《基于BP神经网络的宁夏水资源需求量预测》

 

 

 

 

标签:预测,mem,神经网络,算法,授粉,BP,output
来源: https://www.cnblogs.com/matlabxiao/p/15058456.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有